@@ -28,7 +28,7 @@ During the construction, we do arithmetic operations to get the group algebra el
2828Here `x` is the generator of the group algebra, i.e., offset-1 cyclic permutation, and `GA(1)` is the unit element.
2929
3030```jldoctest
31- julia> import Hecke: group_algebra, GF, abelian_group, gens; import LinearAlgebra: diagind;
31+ julia> import Hecke: group_algebra, GF, abelian_group, gens; import LinearAlgebra: diagind; using QuantumClifford.ECC;
3232
3333julia> l = 63; GA = group_algebra(GF(2), abelian_group(l)); x = gens(GA)[];
3434
@@ -52,10 +52,12 @@ julia> code_n(c1), code_k(c1)
5252(882, 24)
5353```
5454
55- A [[175, 19, d ≤ 0 ]] code from Eq. (18) in Appendix A of [raveendran2022finite](@cite),
55+ A [[175, 19, d ≤ 10 ]] code from Eq. (18) in Appendix A of [raveendran2022finite](@cite),
5656following the 4th constructor.
5757
5858```jldoctest
59+ julia> import Hecke; using QuantumClifford.ECC;
60+
5961julia> base_matrix = [0 0 0 0; 0 1 2 5; 0 6 3 1]; l = 7;
6062
6163julia> c2 = LPCode(base_matrix, l .- base_matrix', l);
@@ -162,15 +164,15 @@ Here is an example of a [[56, 28, 2]] 2BGA code from Table 2 of [lin2024quantum]
162164with direct product of `C₄ x C₂`.
163165
164166```jldoctest
165- julia> import Hecke: group_algebra, GF, abelian_group, gens
167+ julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;
166168
167169julia> GA = group_algebra(GF(2), abelian_group([14,2]));
168170
169171julia> x, s = gens(GA);
170172
171- julia> A = 1 + x^7
173+ julia> A = 1 + x^7;
172174
173- julia> B = 1 + x^7 + s + x^8 + s*x^7 + x
175+ julia> B = 1 + x^7 + s + x^8 + s*x^7 + x;
174176
175177julia> c = two_block_group_algebra_codes(A,B);
176178
@@ -189,7 +191,7 @@ The ECC Zoo has an [entry for this family](https://errorcorrectionzoo.org/c/qcga
189191A [[756, 16, ≤ 34]] code from Table 3 of [bravyi2024high](@cite):
190192
191193```jldoctest
192- julia> import Hecke: group_algebra, GF, abelian_group, gens
194+ julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;
193195
194196julia> l=21; m=18;
195197
@@ -215,10 +217,14 @@ where `𝐺ᵣ = ℤ/l₁ × ℤ/l₂ × ... × ℤ/lᵣ`.
215217A [[48, 4, 6]] Weight-6 TB-QLDPC code from Appendix A Table 2 of [voss2024multivariatebicyclecodes](@cite).
216218
217219```jldoctest
218- julia> import Hecke: group_algebra, GF, abelian_group, gens; # hide
220+ julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;
219221
220222julia> l=4; m=6;
221223
224+ julia> GA = group_algebra(GF(2), abelian_group([l, m]));
225+
226+ julia> x, y = gens(GA);
227+
222228julia> z = x*y;
223229
224230julia> A = x^3 + y^5;
@@ -238,10 +244,10 @@ where `𝑙` and `𝑚` are coprime, and can be expressed as univariate polynomi
238244with generator `𝜋 = 𝑥𝑦`. They can be viewed as a special case of Lifted Product construction
239245based on abelian group `ℤₗ x ℤₘ` where `ℤⱼ` cyclic group of order `j`.
240246
241- [108, 12, 6]] coprime-bivariate bicycle (BB) code from Table 2 of [wang2024coprime](@cite).
247+ [[ 108, 12, 6]] coprime-bivariate bicycle (BB) code from Table 2 of [wang2024coprime](@cite).
242248
243249```jldoctest
244- julia> import Hecke: group_algebra, GF, abelian_group, gens;
250+ julia> import Hecke: group_algebra, GF, abelian_group, gens; using QuantumClifford.ECC;
245251
246252julia> l=2; m=27;
247253
@@ -252,6 +258,10 @@ julia> 𝜋 = gens(GA)[1];
252258julia> A = 𝜋^2 + 𝜋^5 + 𝜋^44;
253259
254260julia> B = 𝜋^8 + 𝜋^14 + 𝜋^47;
261+
262+ julia> c = two_block_group_algebra_codes(A, B);
263+
264+ julia> code_n(c), code_k(c)
255265(108, 12)
256266```
257267
@@ -271,6 +281,8 @@ See also: [`two_block_group_algebra_codes`](@ref), [`bicycle_codes`](@ref).
271281A [[254, 28, 14 ≤ d ≤ 20]] code from (A1) in Appendix B of [panteleev2021degenerate](@cite).
272282
273283```jldoctest
284+ julia> import Hecke; using QuantumClifford.ECC
285+
274286julia> c = generalized_bicycle_codes([0, 15, 20, 28, 66], [0, 58, 59, 100, 121], 127);
275287
276288julia> code_n(c), code_k(c)
@@ -281,6 +293,8 @@ An [[70, 8, 10]] *abelian* 2BGA code from Table 1 of [lin2024quantum](@cite), wi
281293order `l = 35`, illustrates that *abelian* 2BGA codes can be viewed as GB codes.
282294
283295```jldoctest
296+ julia> import Hecke; using QuantumClifford.ECC
297+
284298julia> l = 35;
285299
286300julia> c1 = generalized_bicycle_codes([0, 15, 16, 18], [0, 1, 24, 27], l);
@@ -317,6 +331,8 @@ code with the group `G = ℤ₃ˣ³` corresponds to a cubic code.
317331The ECC Zoo has an [entry for this family](https://errorcorrectionzoo.org/c/haah_cubic).
318332
319333```jldoctest
334+ julia> import Hecke; using QuantumClifford.ECC;
335+
320336julia> c = haah_cubic_codes([0, 15, 20, 28, 66], [0, 58, 59, 100, 121], 6);
321337
322338julia> code_n(c), code_k(c)
0 commit comments