|
| 1 | +@testitem "ECC 2BGA lin2024quantum" begin |
| 2 | + import Hecke: group_algebra, GF, abelian_group, gens, quo, one |
| 3 | + using QuantumClifford.ECC: LPCode, code_k, code_n, two_block_group_algebra_codes |
| 4 | + using Oscar: free_group, small_group_identification, describe |
| 5 | + |
| 6 | + @testset "Reproduce Table 1 Block 1" begin |
| 7 | + # [[72, 8, 9]] |
| 8 | + F = free_group(["r"]) |
| 9 | + r = gens(F)[1] |
| 10 | + G, = quo(F, [r^36]) |
| 11 | + F2G = group_algebra(GF(2), G) |
| 12 | + r = gens(G)[1] |
| 13 | + a_elts = [one(G), r^28] |
| 14 | + b_elts = [one(G), r, r^18, r^12, r^29, r^14] |
| 15 | + a = sum(F2G(x) for x in a_elts) |
| 16 | + b = sum(F2G(x) for x in b_elts) |
| 17 | + c = two_block_group_algebra_codes(a, b) |
| 18 | + @test describe(G) == "C36" |
| 19 | + @test small_group_identification(G) == (36, 2) |
| 20 | + @test code_n(c) == 72 && code_k(c) == 8 |
| 21 | + end |
| 22 | + |
| 23 | + @testset "Reproduce Table 1 Block 2" begin |
| 24 | + # [[72, 8, 9]] |
| 25 | + F = free_group(["r", "s"]) |
| 26 | + r, s = gens(F) |
| 27 | + G, = quo(F, [s^4, r^9, s^(-1)*r*s*r]) |
| 28 | + F2G = group_algebra(GF(2), G) |
| 29 | + r, s = gens(G) |
| 30 | + a_elts = [one(G), r] |
| 31 | + b_elts = [one(G), s, r^6, s^3 * r, s * r^7, s^3 * r^5] |
| 32 | + a = sum(F2G(x) for x in a_elts) |
| 33 | + b = sum(F2G(x) for x in b_elts) |
| 34 | + c = two_block_group_algebra_codes(a, b) |
| 35 | + @test describe(G) == "C9 : C4" |
| 36 | + @test small_group_identification(G) == (36, 1) |
| 37 | + @test code_n(c) == 72 && code_k(c) == 8 |
| 38 | + |
| 39 | + # [[80, 8, 10]] |
| 40 | + F = free_group(["r", "s"]) |
| 41 | + r, s = gens(F) |
| 42 | + G, = quo(F, [s^5, r^8, r^(-1)*s*r*s]) |
| 43 | + F2G = group_algebra(GF(2), G) |
| 44 | + r, s = gens(G) |
| 45 | + a_elts = [one(G), s*r^4] |
| 46 | + b_elts = [one(G), r, r^2, s, s^3 * r, s^2 * r^6] |
| 47 | + a = sum(F2G(x) for x in a_elts) |
| 48 | + b = sum(F2G(x) for x in b_elts) |
| 49 | + c = two_block_group_algebra_codes(a, b) |
| 50 | + @test describe(G) == "C5 : C8" |
| 51 | + @test small_group_identification(G) == (40, 1) |
| 52 | + @test code_n(c) == 80 && code_k(c) == 8 |
| 53 | + |
| 54 | + # [[96, 8, 12]] |
| 55 | + F = free_group(["r", "s"]) |
| 56 | + r, s = gens(F) |
| 57 | + G, = quo(F, [s^6, r^8, (r*s)^8]) |
| 58 | + F2G = group_algebra(GF(2), G) |
| 59 | + r, s = gens(G) |
| 60 | + a_elts = [one(G), s*r^2] |
| 61 | + b_elts = [one(G), r, s^3, s^4, s^2 * r^5, s^4 * r^6] |
| 62 | + a = sum(F2G(x) for x in a_elts) |
| 63 | + b = sum(F2G(x) for x in b_elts) |
| 64 | + c = two_block_group_algebra_codes(a, b) |
| 65 | + @test describe(G) == "C5 : C8" |
| 66 | + @test small_group_identification(G) == (40, 1) |
| 67 | + @test code_n(c) == 80 && code_k(c) == 8 |
| 68 | + end |
| 69 | + |
| 70 | + @testset "Reproduce Table 1 Block 3" begin |
| 71 | + # [[54, 6, 9]] |
| 72 | + F = free_group(["r"]) |
| 73 | + r = gens(F)[1] |
| 74 | + G, = quo(F, [r^27]) |
| 75 | + F2G = group_algebra(GF(2), G) |
| 76 | + r = gens(G)[1] |
| 77 | + a_elts = [one(G), r, r^3, r^7] |
| 78 | + b_elts = [one(G), r, r^12, r^19] |
| 79 | + a = sum(F2G(x) for x in a_elts); |
| 80 | + b = sum(F2G(x) for x in b_elts) |
| 81 | + c = two_block_group_algebra_codes(a, b) |
| 82 | + @test describe(G) == "C27" |
| 83 | + @test small_group_identification(G) == (27, 1) |
| 84 | + @test code_n(c) == 54 && code_k(c) == 6 |
| 85 | + |
| 86 | + # [[60, 6, 10]] |
| 87 | + F = free_group(["r"]) |
| 88 | + r = gens(F)[1] |
| 89 | + G, = quo(F, [r^30]) |
| 90 | + F2G = group_algebra(GF(2), G) |
| 91 | + r = gens(G)[1] |
| 92 | + a_elts = [one(G), r^10, r^6, r^13] |
| 93 | + b_elts = [one(G), r^25, r^16, r^12] |
| 94 | + a = sum(F2G(x) for x in a_elts); |
| 95 | + b = sum(F2G(x) for x in b_elts) |
| 96 | + c = two_block_group_algebra_codes(a, b) |
| 97 | + @test describe(G) == "C30" |
| 98 | + @test small_group_identification(G) == (30, 4) |
| 99 | + @test code_n(c) == 60 && code_k(c) == 6 |
| 100 | + |
| 101 | + # [[70, 8, 10]] |
| 102 | + F = free_group(["r"]) |
| 103 | + r = gens(F)[1] |
| 104 | + G, = quo(F, [r^35]) |
| 105 | + F2G = group_algebra(GF(2), G) |
| 106 | + r = gens(G)[1] |
| 107 | + a_elts = [one(G), r^15, r^16, r^18] |
| 108 | + b_elts = [one(G), r, r^24, r^27] |
| 109 | + a = sum(F2G(x) for x in a_elts); |
| 110 | + b = sum(F2G(x) for x in b_elts) |
| 111 | + c = two_block_group_algebra_codes(a, b) |
| 112 | + @test describe(G) == "C35" |
| 113 | + @test small_group_identification(G) == (35, 1) |
| 114 | + @test code_n(c) == 70 && code_k(c) == 8 |
| 115 | + |
| 116 | + # [[72, 8, 10]] |
| 117 | + F = free_group(["r"]) |
| 118 | + r = gens(F)[1] |
| 119 | + G, = quo(F, [r^36]) |
| 120 | + F2G = group_algebra(GF(2), G) |
| 121 | + r = gens(G)[1] |
| 122 | + a_elts = [one(G), r^9, r^28, r^31] |
| 123 | + b_elts = [one(G), r, r^21, r^34] |
| 124 | + a = sum(F2G(x) for x in a_elts); |
| 125 | + b = sum(F2G(x) for x in b_elts) |
| 126 | + c = two_block_group_algebra_codes(a, b) |
| 127 | + @test describe(G) == "C36" |
| 128 | + @test small_group_identification(G) == (36, 2) |
| 129 | + @test code_n(c) == 72 && code_k(c) == 8 |
| 130 | + |
| 131 | + # [[72, 10, 9]] |
| 132 | + F = free_group(["r"]) |
| 133 | + r = gens(F)[1] |
| 134 | + G, = quo(F, [r^36]) |
| 135 | + F2G = group_algebra(GF(2), G) |
| 136 | + r = gens(G)[1] |
| 137 | + a_elts = [one(G), r^9, r^28, r^13] |
| 138 | + b_elts = [one(G), r, r^3, r^22] |
| 139 | + a = sum(F2G(x) for x in a_elts); |
| 140 | + b = sum(F2G(x) for x in b_elts) |
| 141 | + c = two_block_group_algebra_codes(a, b) |
| 142 | + @test describe(G) == "C36" |
| 143 | + @test small_group_identification(G) == (36, 2) |
| 144 | + @test code_n(c) == 72 && code_k(c) == 10 |
| 145 | + end |
| 146 | + |
| 147 | + @testset "Reproduce Table 1 Block 4" begin |
| 148 | + # [[72, 8, 9]] |
| 149 | + F = free_group(["r", "s"]) |
| 150 | + r, s = gens(F) |
| 151 | + G, = quo(F, [s^4, r^9, s^(-1)*r*s*r]) |
| 152 | + F2G = group_algebra(GF(2), G) |
| 153 | + r, s = gens(G) |
| 154 | + a_elts = [one(G), s, r, s*r^6] |
| 155 | + b_elts = [one(G), s^2*r, s^2*r^6, r^2] |
| 156 | + a = sum(F2G(x) for x in a_elts); |
| 157 | + b = sum(F2G(x) for x in b_elts) |
| 158 | + c = two_block_group_algebra_codes(a, b) |
| 159 | + @test describe(G) == "C9 : C4" |
| 160 | + @test small_group_identification(G) == (36, 1) |
| 161 | + @test code_n(c) == 72 && code_k(c) == 8 |
| 162 | + |
| 163 | + # [[80, 8, 10]] |
| 164 | + F = free_group(["r", "s"]) |
| 165 | + r, s = gens(F) |
| 166 | + G, = quo(F, [s^5, r^8, r^(-1)*s*r*s]) |
| 167 | + F2G = group_algebra(GF(2), G) |
| 168 | + r, s = gens(G) |
| 169 | + a_elts = [one(G), r, s, s^3*r^5] |
| 170 | + b_elts = [one(G), r^2, s*r^4, s^3*r^2] |
| 171 | + a = sum(F2G(x) for x in a_elts) |
| 172 | + b = sum(F2G(x) for x in b_elts) |
| 173 | + c = two_block_group_algebra_codes(a, b) |
| 174 | + @test describe(G) == "C5 : C8" |
| 175 | + @test small_group_identification(G) == (40, 1) |
| 176 | + @test code_n(c) == 80 && code_k(c) == 8 |
| 177 | + |
| 178 | + # [[96, 8, 12]] |
| 179 | + F = free_group(["r", "s"]) |
| 180 | + r, s = gens(F) |
| 181 | + G, = quo(F, [s^3, r^16, r^(-1)*s*r*s]) |
| 182 | + F2G = group_algebra(GF(2), G) |
| 183 | + r, s = gens(G) |
| 184 | + a_elts = [one(G), r, s, r^14] |
| 185 | + b_elts = [one(G), r^2, s*r^4, r^11] |
| 186 | + a = sum(F2G(x) for x in a_elts) |
| 187 | + b = sum(F2G(x) for x in b_elts) |
| 188 | + c = two_block_group_algebra_codes(a, b) |
| 189 | + @test describe(G) == "C3 : C16" |
| 190 | + @test small_group_identification(G) == (48, 1) |
| 191 | + @test code_n(c) == 96 && code_k(c) == 6 |
| 192 | + |
| 193 | + # [[80, 9, 9]] |
| 194 | + F = free_group(["r", "s"]) |
| 195 | + r, s = gens(F) |
| 196 | + G, = quo(F, [s^4, r^10, (r*s)^2]) |
| 197 | + F2G = group_algebra(GF(2), G) |
| 198 | + r, s = gens(G) |
| 199 | + a_elts = [one(G), r^7, r^8, s*r^10] |
| 200 | + b_elts = [one(G), s, r^5, s^2*r^13] |
| 201 | + a = sum(F2G(x) for x in a_elts) |
| 202 | + b = sum(F2G(x) for x in b_elts) |
| 203 | + c = two_block_group_algebra_codes(a, b) |
| 204 | + @test describe(G) == "C7 x S3" |
| 205 | + @test small_group_identification(G) == (42, 3) |
| 206 | + @test code_n(c) == 84 && code_k(c) == 10 |
| 207 | + |
| 208 | + # [[84, 10, 9]] |
| 209 | + F = free_group(["r", "s"]) |
| 210 | + r, s = gens(F) |
| 211 | + G, = quo(F, [s^3, r^14, r^(-1)*s*r*s]) |
| 212 | + F2G = group_algebra(GF(2), G) |
| 213 | + r, s = gens(G) |
| 214 | + a_elts = [one(G), r^7, r^8, s*r^10] |
| 215 | + b_elts = [one(G), s, r^5, s^2*r^13] |
| 216 | + a = sum(F2G(x) for x in a_elts) |
| 217 | + b = sum(F2G(x) for x in b_elts) |
| 218 | + c = two_block_group_algebra_codes(a, b) |
| 219 | + @test describe(G) == "C7 x S3" |
| 220 | + @test small_group_identification(G) == (42, 3) |
| 221 | + @test code_n(c) == 84 && code_k(c) == 10 |
| 222 | + |
| 223 | + # [[96, 6, 12]] |
| 224 | + F = free_group(["r", "s"]) |
| 225 | + r, s = gens(F) |
| 226 | + G, = quo(F, [s^4, r^12, s^(-1)*r*s*r]) |
| 227 | + F2G = group_algebra(GF(2), G) |
| 228 | + r, s = gens(G) |
| 229 | + a_elts = [one(G), s, r^9, s * r] |
| 230 | + b_elts = [one(G), s^2 * s^9, r^7, r^2] |
| 231 | + a = sum(F2G(x) for x in a_elts); |
| 232 | + b = sum(F2G(x) for x in b_elts) |
| 233 | + c = two_block_group_algebra_codes(a, b) |
| 234 | + @test describe(G) == "C12 : C4" |
| 235 | + @test small_group_identification(G) == (48, 13) |
| 236 | + @test code_n(c) == 96 && code_k(c) == 6 |
| 237 | + |
| 238 | + # [[96, 12, 10]] |
| 239 | + F = free_group(["r", "s"]) |
| 240 | + r, s = gens(F) |
| 241 | + G, = quo(F, [s^6, r^8, r^(-1)*s*r*s]) |
| 242 | + F2G = group_algebra(GF(2), G) |
| 243 | + r, s = gens(G) |
| 244 | + a_elts = [one(G), r, s^3 * r^2, s^2 * r^3] |
| 245 | + b_elts = [one(G), r, s^4 * r^6, s^5 * r^3] |
| 246 | + a = sum(F2G(x) for x in a_elts) |
| 247 | + b = sum(F2G(x) for x in b_elts) |
| 248 | + c = two_block_group_algebra_codes(a, b) |
| 249 | + @test describe(G) == "C2 x (C3 : C8)" |
| 250 | + @test small_group_identification(G) == (48, 9) |
| 251 | + @test code_n(c) == 96 && code_k(c) == 12 |
| 252 | + end |
| 253 | +end |
0 commit comments