|
| 1 | +@testitem "ECC 2BGA Table 2 via Presentation of Cyclic Groups" begin |
| 2 | + using Nemo: FqFieldElem |
| 3 | + using Hecke: group_algebra, GF, abelian_group, gens, quo, one, GroupAlgebra |
| 4 | + using QuantumClifford.ECC |
| 5 | + using QuantumClifford.ECC: code_k, code_n, two_block_group_algebra_codes |
| 6 | + using Oscar: free_group, small_group_identification, describe, order, FPGroupElem, FPGroup, FPGroupElem |
| 7 | + |
| 8 | + function get_code(a_elts::Vector{FPGroupElem}, b_elts::Vector{FPGroupElem}, x::FPGroupElem, F2G::GroupAlgebra{FqFieldElem, FPGroup, FPGroupElem}) |
| 9 | + a = sum(F2G(x) for x in a_elts) |
| 10 | + b = sum(F2G(x) for x in b_elts) |
| 11 | + c = two_block_group_algebra_codes(a,b) |
| 12 | + return c |
| 13 | + end |
| 14 | + |
| 15 | + @testset "Reproduce Table 2 lin2024quantum" begin |
| 16 | + # codes taken from Appendix C, Table 2 of [lin2024quantum](@cite) |
| 17 | + |
| 18 | + # [[16, 2, 4]] |
| 19 | + # m = 4 |
| 20 | + F = free_group(["x", "s"]) |
| 21 | + x, s = gens(F) |
| 22 | + G, = quo(F, [x^4, s^2, x * s * x^-1 * s^-1]) |
| 23 | + F2G = group_algebra(GF(2), G) |
| 24 | + x, s = gens(G) |
| 25 | + a_elts = [one(G), x] |
| 26 | + b_elts = [one(G), x, s, x^2, s*x, s*x^3] |
| 27 | + c = get_code(a_elts, b_elts, x, F2G) |
| 28 | + @test describe(G) == "C4 x C2" |
| 29 | + @test order(G) == 8 |
| 30 | + @test small_group_identification(G) == (8, 2) |
| 31 | + @test code_n(c) == 16 && code_k(c) == 2 |
| 32 | + |
| 33 | + # [[16, 4, 4]] |
| 34 | + b_elts = [one(G), x, s, x^2, s*x, x^3] |
| 35 | + c = get_code(a_elts, b_elts, x, F2G) |
| 36 | + @test describe(G) == "C4 x C2" |
| 37 | + @test order(G) == 8 |
| 38 | + @test small_group_identification(G) == (8, 2) |
| 39 | + @test code_n(c) == 16 && code_k(c) == 4 |
| 40 | + |
| 41 | + # [[16, 8, 2]] |
| 42 | + a_elts = [one(G), s] |
| 43 | + b_elts = [one(G), x, s, x^2, s*x, x^2] |
| 44 | + c = get_code(a_elts, b_elts, x, F2G) |
| 45 | + @test describe(G) == "C4 x C2" |
| 46 | + @test order(G) == 8 |
| 47 | + @test small_group_identification(G) == (8, 2) |
| 48 | + @test code_n(c) == 16 && code_k(c) == 8 |
| 49 | + |
| 50 | + # [[24, 4, 5]] |
| 51 | + # m = 6 |
| 52 | + F = free_group(["x", "s"]) |
| 53 | + x, s = gens(F) |
| 54 | + G, = quo(F, [x^6, s^2, x * s * x^-1 * s^-1]) |
| 55 | + F2G = group_algebra(GF(2), G) |
| 56 | + x, s = gens(G) |
| 57 | + a_elts = [one(G), x] |
| 58 | + b_elts = [one(G), x^3, s, x^4, x^2, s*x] |
| 59 | + c = get_code(a_elts, b_elts, x, F2G) |
| 60 | + @test describe(G) == "C6 x C2" |
| 61 | + @test order(G) == 12 |
| 62 | + @test small_group_identification(G) == (12, 5) |
| 63 | + @test code_n(c) == 24 && code_k(c) == 4 |
| 64 | + |
| 65 | + # [[24, 12, 2]] |
| 66 | + a_elts = [one(G), x^3] |
| 67 | + b_elts = [one(G), x^3, s, x^4, s * x^3, x] |
| 68 | + c = get_code(a_elts, b_elts, x, F2G) |
| 69 | + @test describe(G) == "C6 x C2" |
| 70 | + @test order(G) == 12 |
| 71 | + @test small_group_identification(G) == (12, 5) |
| 72 | + @test code_n(c) == 24 && code_k(c) == 12 |
| 73 | + |
| 74 | + # [[32, 8, 4]] |
| 75 | + # m = 8 |
| 76 | + F = free_group(["x", "s"]) |
| 77 | + x, s = gens(F) |
| 78 | + G, = quo(F, [x^8, s^2, x * s * x^-1 * s^-1]) |
| 79 | + F2G = group_algebra(GF(2), G) |
| 80 | + x, s = gens(G) |
| 81 | + a_elts = [one(G), x^6] |
| 82 | + b_elts = [one(G), s * x^7, s * x^4, x^6, s * x^5, s * x^2] |
| 83 | + c = get_code(a_elts, b_elts, x, F2G) |
| 84 | + @test describe(G) == "C8 x C2" |
| 85 | + @test order(G) == 16 |
| 86 | + @test small_group_identification(G) == (16, 5) |
| 87 | + @test code_n(c) == 32 && code_k(c) == 8 |
| 88 | + |
| 89 | + # [[32, 16, 2]] |
| 90 | + a_elts = [one(G), s * x^4] |
| 91 | + b_elts = [one(G), s * x^7, s * x^4, x^6, x^3, s * x^2] |
| 92 | + c = get_code(a_elts, b_elts, x, F2G) |
| 93 | + @test describe(G) == "C8 x C2" |
| 94 | + @test order(G) == 16 |
| 95 | + @test small_group_identification(G) == (16, 5) |
| 96 | + @test code_n(c) == 32 && code_k(c) == 16 |
| 97 | + |
| 98 | + # [[40, 4, 8]] |
| 99 | + # m = 10 |
| 100 | + F = free_group(["x", "s"]) |
| 101 | + x, s = gens(F) |
| 102 | + G, = quo(F, [x^10, s^2, x * s * x^-1 * s^-1]) |
| 103 | + F2G = group_algebra(GF(2), G) |
| 104 | + x, s = gens(G) |
| 105 | + a_elts = [one(G), x] |
| 106 | + b_elts = [one(G), x^5, x^6, s * x^6, x^7, s * x^3] |
| 107 | + c = get_code(a_elts, b_elts, x, F2G) |
| 108 | + @test describe(G) == "C10 x C2" |
| 109 | + @test order(G) == 20 |
| 110 | + @test small_group_identification(G) == (20, 5) |
| 111 | + @test code_n(c) == 40 && code_k(c) == 4 |
| 112 | + |
| 113 | + # [[40, 8, 5]] |
| 114 | + a_elts = [one(G), x^6] |
| 115 | + b_elts = [one(G), x^5, s, x^6 , x, s * x^2] |
| 116 | + c = get_code(a_elts, b_elts, x, F2G) |
| 117 | + @test describe(G) == "C10 x C2" |
| 118 | + @test order(G) == 20 |
| 119 | + @test small_group_identification(G) == (20, 5) |
| 120 | + @test code_n(c) == 40 && code_k(c) == 8 |
| 121 | + |
| 122 | + # [[40, 20, 2]] |
| 123 | + a_elts = [one(G), x^5] |
| 124 | + b_elts = [one(G), x^5, s, x^6, s * x^5, x] |
| 125 | + c = get_code(a_elts, b_elts, x, F2G) |
| 126 | + @test describe(G) == "C10 x C2" |
| 127 | + @test order(G) == 20 |
| 128 | + @test small_group_identification(G) == (20, 5) |
| 129 | + @test code_n(c) == 40 && code_k(c) == 20 |
| 130 | + |
| 131 | + # [[48, 8, 6]] |
| 132 | + # m = 12 |
| 133 | + F = free_group(["x", "s"]) |
| 134 | + x, s = gens(F) |
| 135 | + G, = quo(F, [x^12, s^2, x * s * x^-1 * s^-1]) |
| 136 | + F2G = group_algebra(GF(2), G) |
| 137 | + x, s = gens(G) |
| 138 | + a_elts = [one(G), s * x^10] |
| 139 | + b_elts = [one(G), x^3, s * x^6, x^4, x^7, x^8] |
| 140 | + c = get_code(a_elts, b_elts, x, F2G) |
| 141 | + @test describe(G) == "C12 x C2" |
| 142 | + @test order(G) == 24 |
| 143 | + @test small_group_identification(G) == (24, 9) |
| 144 | + @test code_n(c) == 48 && code_k(c) == 8 |
| 145 | + |
| 146 | + # [[48, 12, 4]] |
| 147 | + a_elts = [one(G), x^3] |
| 148 | + b_elts = [one(G), x^3, s * x^6, x^4, s * x^9, x^7] |
| 149 | + c = get_code(a_elts, b_elts, x, F2G) |
| 150 | + @test describe(G) == "C12 x C2" |
| 151 | + @test order(G) == 24 |
| 152 | + @test small_group_identification(G) == (24, 9) |
| 153 | + @test code_n(c) == 48 && code_k(c) == 12 |
| 154 | + |
| 155 | + # [[48, 16, 3]] |
| 156 | + a_elts = [one(G), x^4] |
| 157 | + b_elts = [one(G), x^3, s * x^6, x^4, x^7, s * x^10] |
| 158 | + c = get_code(a_elts, b_elts, x, F2G) |
| 159 | + @test describe(G) == "C12 x C2" |
| 160 | + @test order(G) == 24 |
| 161 | + @test small_group_identification(G) == (24, 9) |
| 162 | + @test code_n(c) == 48 && code_k(c) == 16 |
| 163 | + |
| 164 | + # [[48, 24, 2]] |
| 165 | + a_elts = [one(G), s * x^6] |
| 166 | + b_elts = [one(G), x^3, s * x^6, x^4, s * x^9, s * x^10] |
| 167 | + c = get_code(a_elts, b_elts, x, F2G) |
| 168 | + @test describe(G) == "C12 x C2" |
| 169 | + @test order(G) == 24 |
| 170 | + @test small_group_identification(G) == (24, 9) |
| 171 | + @test code_n(c) == 48 && code_k(c) == 24 |
| 172 | + |
| 173 | + # [[56, 8, 7]] |
| 174 | + # m = 14 |
| 175 | + F = free_group(["x", "s"]) |
| 176 | + x, s = gens(F) |
| 177 | + G, = quo(F, [x^14, s^2, x * s * x^-1 * s^-1]) |
| 178 | + F2G = group_algebra(GF(2), G) |
| 179 | + x, s = gens(G) |
| 180 | + a_elts = [one(G), x^8] |
| 181 | + b_elts = [one(G), x^7, s, x^8, x^9, s * x^4] |
| 182 | + c = get_code(a_elts, b_elts, x, F2G) |
| 183 | + @test describe(G) == "C14 x C2" |
| 184 | + @test order(G) == 28 |
| 185 | + @test small_group_identification(G) == (28, 4) |
| 186 | + @test code_n(c) == 56 && code_k(c) == 8 |
| 187 | + |
| 188 | + # [[56, 28, 2]] |
| 189 | + a_elts = [one(G), x^7] |
| 190 | + b_elts = [one(G), x^7, s, x^8, s * x^7, x] |
| 191 | + c = get_code(a_elts, b_elts, x, F2G) |
| 192 | + @test describe(G) == "C14 x C2" |
| 193 | + @test order(G) == 28 |
| 194 | + @test small_group_identification(G) == (28, 4) |
| 195 | + @test code_n(c) == 56 && code_k(c) == 28 |
| 196 | + end |
| 197 | +end |
0 commit comments