Skip to content

Commit d86ff67

Browse files
authored
minor documentation improvements (#560)
1 parent ac1de03 commit d86ff67

File tree

1 file changed

+13
-12
lines changed

1 file changed

+13
-12
lines changed

ext/QuantumCliffordOscarExt/d_dimensional_codes.jl

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,8 @@ end
3838
"""
3939
$TYPEDEF
4040
41-
Constructs the `D`-dimensional surface code using chain complexes and ``\\mathbb{F}_2``-homology.
41+
Constructs the `D`-dimensional surface code using [chain complexes](https://en.wikipedia.org/wiki/Chain_complex)
42+
and ``\\mathbb{F}_2``-[homology](https://en.wikipedia.org/wiki/Homology_(mathematics)).
4243
4344
## Homological Algebra Foundations of Quantum Error Correction
4445
@@ -74,7 +75,7 @@ The dual complex has:
7475
- **i-coboundaries**: ``B^i(C) := \\mathrm{im} \\partial_i^T``
7576
- **i-th cohomology**: ``H^i(C) := Z^i(C)/B^i(C)``
7677
77-
### Classical QECs via Chain Complexes and ``\\mathbb{F_2}`` Homology
78+
### Classical Codes via Chain Complexes and ``\\mathbb{F_2}`` Homology
7879
7980
An ``[n,k,d]`` classical code corresponds to a `2`-term complex:
8081
@@ -90,7 +91,7 @@ where
9091
- ``C_0 = \\mathbb{F}_2^{n-k}`` (syndrome space)
9192
- ``H`` is the parity check matrix
9293
93-
### Quantum CSS via Chain Complexes and ``\\mathbb{F_2}`` Homology
94+
### Quantum CSS Codes via Chain Complexes and ``\\mathbb{F_2}`` Homology
9495
9596
Quantum CSS codes extend this to `3`-term complexes:
9697
@@ -131,8 +132,8 @@ hypergraph product of these complexes.
131132
132133
## Double Complex
133134
134-
Given chain complexes `C` and `D`, we construct a double complex derived from
135-
the tensor product of two `2`-term chain complexes:
135+
Given chain complexes `C` and `D`, we construct a [double complex](https://en.wikipedia.org/wiki/Double_complex)
136+
derived from the tensor product of two `2`-term chain complexes:
136137
137138
```math
138139
\\begin{aligned}
@@ -147,7 +148,7 @@ sum of vector spaces and boundary maps that share the same dimension:
147148
148149
```math
149150
\\begin{aligned}
150-
\text{Tot}(C \\boxtimes D)_i = \\bigoplus_{i=j+k} C_j \\otimes D_k = E_i
151+
\\text{Tot}(C \\boxtimes D)_i = \\bigoplus_{i=j+k} C_j \\otimes D_k = E_i
151152
\\end{aligned}
152153
```
153154
@@ -159,7 +160,7 @@ with boundary maps:
159160
\\end{aligned}
160161
```
161162
162-
The resulting chain complex, called the tensor product of `C` and `D`, `C ⊗ D`, enables
163+
The resulting chain complex, called the tensor product of ``C`` and ``D``, ``C ⊗ D``, enables
163164
the construction of a CSS code when selecting any three consecutive terms in its sequence.
164165
165166
## Subfamilies
@@ -175,7 +176,7 @@ E_2 \\xrightarrow{\\partial_2^E} E_1 \\xrightarrow{\\partial_1^E} E_0
175176
\\end{aligned}
176177
```
177178
178-
### Examples
179+
#### Examples
179180
180181
```jldoctest
181182
julia> using Oscar; using QuantumClifford; using QuantumClifford.ECC;
@@ -275,7 +276,7 @@ F_3 \\xrightarrow{\\partial_3^F} F_2 \\xrightarrow{\\partial_2^F} F_1 \\xrightar
275276
276277
- **Z-type** metachecks: ``M_Z^T = \\partial_3^F``
277278
278-
### Examples
279+
#### Example
279280
280281
Here is an example of `[[12, 1, 2]]` `3D` Surface code with `L = 2` from [Berthusen_2024](@cite).
281282
@@ -331,7 +332,7 @@ G_4 \\xrightarrow{\\partial_4^G} G_3 \\xrightarrow{\\partial_3^G} G_2 \\xrightar
331332
\\end{aligned}
332333
```
333334
334-
### [[33, 1, 4]]
335+
#### [[33, 1, 4]]
335336
336337
Here is an example of `[[33, 1, 4]]` `4D` Surface code with `L = 2` from [Berthusen_2024](@cite).
337338
@@ -623,7 +624,7 @@ $TYPEDEF
623624
Returns all boundary maps of the chain complex, including both *parity check*
624625
and *metacheck* matrices.
625626
626-
Here are the boundarp maps of `[[12, 1, 2]]` `3D` Surface code with
627+
Here are the boundary maps of `[[12, 1, 2]]` `3D` Surface code with
627628
`L = 2` from [Berthusen_2024](@cite).
628629
629630
```jldoctest boundarymaps
@@ -697,7 +698,7 @@ satisfy the condition ``\\partial_{i+1} \\partial_i = 0``. This guarantees that:
697698
698699
```math
699700
\\begin{aligned}
700-
M_Z H_Z = 0 \\quad \text{and} \\quad M_X H_X = 0,
701+
M_Z H_Z = 0 \\quad \\text{and} \\quad M_X H_X = 0,
701702
\\end{aligned}
702703
```
703704

0 commit comments

Comments
 (0)