3838"""
3939 $TYPEDEF
4040
41- Constructs the `D`-dimensional surface code using chain complexes and ``\\ mathbb{F}_2``-homology.
41+ Constructs the `D`-dimensional surface code using [chain complexes](https://en.wikipedia.org/wiki/Chain_complex)
42+ and ``\\ mathbb{F}_2``-[homology](https://en.wikipedia.org/wiki/Homology_(mathematics)).
4243
4344## Homological Algebra Foundations of Quantum Error Correction
4445
@@ -74,7 +75,7 @@ The dual complex has:
7475- **i-coboundaries**: ``B^i(C) := \\ mathrm{im} \\ partial_i^T``
7576- **i-th cohomology**: ``H^i(C) := Z^i(C)/B^i(C)``
7677
77- ### Classical QECs via Chain Complexes and ``\\ mathbb{F_2}`` Homology
78+ ### Classical Codes via Chain Complexes and ``\\ mathbb{F_2}`` Homology
7879
7980An ``[n,k,d]`` classical code corresponds to a `2`-term complex:
8081
9091- ``C_0 = \\ mathbb{F}_2^{n-k}`` (syndrome space)
9192- ``H`` is the parity check matrix
9293
93- ### Quantum CSS via Chain Complexes and ``\\ mathbb{F_2}`` Homology
94+ ### Quantum CSS Codes via Chain Complexes and ``\\ mathbb{F_2}`` Homology
9495
9596Quantum CSS codes extend this to `3`-term complexes:
9697
@@ -131,8 +132,8 @@ hypergraph product of these complexes.
131132
132133## Double Complex
133134
134- Given chain complexes `C` and `D`, we construct a double complex derived from
135- the tensor product of two `2`-term chain complexes:
135+ Given chain complexes `C` and `D`, we construct a [ double complex](https://en.wikipedia.org/wiki/Double_complex)
136+ derived from the tensor product of two `2`-term chain complexes:
136137
137138```math
138139\\ begin{aligned}
@@ -147,7 +148,7 @@ sum of vector spaces and boundary maps that share the same dimension:
147148
148149```math
149150\\ begin{aligned}
150- \t ext{Tot}(C \\ boxtimes D)_i = \\ bigoplus_{i=j+k} C_j \\ otimes D_k = E_i
151+ \\ text{Tot}(C \\ boxtimes D)_i = \\ bigoplus_{i=j+k} C_j \\ otimes D_k = E_i
151152\\ end{aligned}
152153```
153154
@@ -159,7 +160,7 @@ with boundary maps:
159160\\ end{aligned}
160161```
161162
162- The resulting chain complex, called the tensor product of `C` and `D` , `C ⊗ D`, enables
163+ The resulting chain complex, called the tensor product of ``C`` and ``D`` , `` C ⊗ D` `, enables
163164the construction of a CSS code when selecting any three consecutive terms in its sequence.
164165
165166## Subfamilies
@@ -175,7 +176,7 @@ E_2 \\xrightarrow{\\partial_2^E} E_1 \\xrightarrow{\\partial_1^E} E_0
175176\\ end{aligned}
176177```
177178
178- ### Examples
179+ #### Examples
179180
180181```jldoctest
181182julia> using Oscar; using QuantumClifford; using QuantumClifford.ECC;
@@ -275,7 +276,7 @@ F_3 \\xrightarrow{\\partial_3^F} F_2 \\xrightarrow{\\partial_2^F} F_1 \\xrightar
275276
276277- **Z-type** metachecks: ``M_Z^T = \\ partial_3^F``
277278
278- ### Examples
279+ #### Example
279280
280281Here is an example of `[[12, 1, 2]]` `3D` Surface code with `L = 2` from [Berthusen_2024](@cite).
281282
@@ -331,7 +332,7 @@ G_4 \\xrightarrow{\\partial_4^G} G_3 \\xrightarrow{\\partial_3^G} G_2 \\xrightar
331332\\ end{aligned}
332333```
333334
334- ### [[33, 1, 4]]
335+ #### [[33, 1, 4]]
335336
336337Here is an example of `[[33, 1, 4]]` `4D` Surface code with `L = 2` from [Berthusen_2024](@cite).
337338
@@ -623,7 +624,7 @@ $TYPEDEF
623624Returns all boundary maps of the chain complex, including both *parity check*
624625and *metacheck* matrices.
625626
626- Here are the boundarp maps of `[[12, 1, 2]]` `3D` Surface code with
627+ Here are the boundary maps of `[[12, 1, 2]]` `3D` Surface code with
627628`L = 2` from [Berthusen_2024](@cite).
628629
629630```jldoctest boundarymaps
@@ -697,7 +698,7 @@ satisfy the condition ``\\partial_{i+1} \\partial_i = 0``. This guarantees that:
697698
698699```math
699700\\ begin{aligned}
700- M_Z H_Z = 0 \\ quad \t ext{and} \\ quad M_X H_X = 0,
701+ M_Z H_Z = 0 \\ quad \\ text{and} \\ quad M_X H_X = 0,
701702\\ end{aligned}
702703```
703704
0 commit comments