@@ -6,7 +6,7 @@ Epitabulate
66<!-- badges: start -->
77
88[ ![ Lifecycle:
9- experimental ] ( https://img.shields.io/badge/lifecycle-experimental-orange .svg )] ( https://www.tidyverse .org/lifecycle/#experimental )
9+ maturing ] ( https://img.shields.io/badge/lifecycle-maturing-blue .svg )] ( https://lifecycle.r-lib .org/articles/stages.html#maturing )
1010[ ![ CRAN
1111status] ( https://www.r-pkg.org/badges/version/epitabulate )] ( https://CRAN.R-project.org/package=epitabulate )
1212[ ![ R-CMD-check] ( https://github.com/R4EPI/epitabulate/actions/workflows/R-CMD-check.yaml/badge.svg )] ( https://github.com/R4EPI/epitabulate/actions/workflows/R-CMD-check.yaml )
@@ -122,10 +122,10 @@ case_fatality_rate_df(linelist,
122122# > # A tibble: 4 × 5
123123# > sex deaths population cfr ci
124124# > <fct> <int> <int> <dbl> <chr>
125- # > 1 female 30 483 6.21 (4.39-8.73 )
126- # > 2 male 19 517 3.68 (2.37-5.67 )
125+ # > 1 female 21 486 4.32 (2.84-6.52 )
126+ # > 2 male 29 514 5.64 (3.96-7.99 )
127127# > 3 (Missing) 0 0 NaN (NaN-NaN)
128- # > 4 Total 49 1000 4.9 (3.73 -6.42 )
128+ # > 4 Total 50 1000 5 (3.81 -6.53 )
129129```
130130
131131It is also possible to add these proportions on to {gtsummary}
@@ -146,7 +146,7 @@ cfr <- linelist |>
146146 #> # A tibble: 1 × 5
147147 #> `**Characteristic**` `**N = 1,000**` Deaths `CFR (%)` `95%CI`
148148 #> <chr> <chr> <chr> <chr> <chr>
149- #> 1 All participants 1,000 49 4.90 (3.73 -6.42 )
149+ #> 1 All participants 1,000 50 5.00 (3.81 -6.53 )
150150
151151## Cross-tabulations for Odds / Risk / Incidence Rate Ratios
152152
@@ -166,15 +166,15 @@ or <- gtsummary::tbl_uvregression(linelist,
166166```
167167
168168 #> tbl_id1 variable var_label var_type row_type header_row N_obs N_event N
169- #> 1 1 fever fever dichotomous label FALSE 1000 49 1000
169+ #> 1 1 fever fever dichotomous label FALSE 1000 50 1000
170170 #> coefficients_type coefficients_label label term var_class var_nlevels
171171 #> 1 logistic OR fever feverTRUE logical 2
172172 #> contrasts contrasts_type n_obs n_event_FALSE n_nonevent_FALSE
173- #> 1 contr.treatment treatment 302 20 282
174- #> n_event_TRUE n_nonevent_TRUE estimate std.error statistic nevent ci
175- #> 1 29 669 1.636097 0.299205 1.645405 49 0.90 , 2.92
176- #> conf.low conf.high p.value n_event_NA n_nonevent_NA reference_row
177- #> 1 0.898395 2.924016 0.09988628 NA NA FALSE
173+ #> 1 contr.treatment treatment 283 13 270
174+ #> n_event_TRUE n_nonevent_TRUE estimate std.error statistic nevent ci
175+ #> 1 37 680 0.8848849 0.330312 -0.370249 50 0.45 , 1.65
176+ #> conf.low conf.high p.value n_event_NA n_nonevent_NA reference_row
177+ #> 1 0.4466785 1.648521 0.7111969 NA NA FALSE
178178
179179``` r
180180# # Risk ratios
@@ -191,15 +191,15 @@ rr <- gtsummary::tbl_uvregression(linelist,
191191```
192192
193193 #> tbl_id1 variable var_label var_type row_type header_row N_obs N_event N
194- #> 1 1 fever fever dichotomous label FALSE 1000 49 1000
194+ #> 1 1 fever fever dichotomous label FALSE 1000 50 1000
195195 #> coefficients_type coefficients_label label term var_class var_nlevels
196196 #> 1 poisson RR fever feverTRUE logical 2
197197 #> contrasts contrasts_type exposure n_obs_FALSE n_event_FALSE n_obs_TRUE
198- #> 1 contr.treatment treatment 302 302 20 698
199- #> n_event_TRUE estimate std.error statistic nevent ci conf.low
200- #> 1 29 1.593971 0.2906669 1.603996 49 0.89 , 2.80 0.8892179
198+ #> 1 contr.treatment treatment 283 283 13 717
199+ #> n_event_TRUE estimate std.error statistic nevent ci conf.low
200+ #> 1 37 0.8901729 0.3224198 -0.3608327 50 0.46 , 1.63 0.4555606
201201 #> conf.high p.value n_obs_NA n_event_NA reference_row
202- #> 1 2.80055 0.1087149 NA NA FALSE
202+ #> 1 1.6307 0.7182245 NA NA FALSE
203203
204204``` r
205205
@@ -216,15 +216,15 @@ irr <- gtsummary::tbl_uvregression(linelist,
216216```
217217
218218 #> tbl_id1 variable var_label var_type row_type header_row N_obs N_event N
219- #> 1 1 fever fever dichotomous label FALSE 1000 49 1000
219+ #> 1 1 fever fever dichotomous label FALSE 1000 50 1000
220220 #> coefficients_type coefficients_label label term var_class var_nlevels
221221 #> 1 poisson IRR fever feverTRUE logical 2
222222 #> contrasts contrasts_type n_obs exposure_FALSE n_event_FALSE
223- #> 1 contr.treatment treatment 302 55206.9 20
224- #> exposure_TRUE n_event_TRUE estimate std.error statistic nevent ci
225- #> 1 128410.7 29 1.604131 0.2906557 1.625918 49 0.89 , 2.82
226- #> conf.low conf.high p.value exposure_NA n_event_NA reference_row
227- #> 1 0.8948995 2.818357 0.1039672 NA NA FALSE
223+ #> 1 contr.treatment treatment 283 49435.5 13
224+ #> exposure_TRUE n_event_TRUE estimate std.error statistic nevent ci
225+ #> 1 127225 37 0.9042222 0.3224081 -0.3122756 50 0.46 , 1.66
226+ #> conf.low conf.high p.value exposure_NA n_event_NA reference_row
227+ #> 1 0.462754 1.656409 0.7548311 NA NA FALSE
228228
229229## Stratification - Cochran Mantel-Haenszel estimates
230230
@@ -245,14 +245,14 @@ cmh <- tbl_cmh(data = linelist,
245245 #> `**Strata**` `**Characteristic**` `**Case (n)**` `**Control (n)**` `**OR**`
246246 #> <chr> <chr> <chr> <chr> <chr>
247247 #> 1 Crude fever <NA> <NA> <NA>
248- #> 2 <NA> FALSE 29 669 <NA>
249- #> 3 <NA> TRUE 20 282 1.64
248+ #> 2 <NA> FALSE 37 680 <NA>
249+ #> 3 <NA> TRUE 13 270 0.88
250250 #> 4 <5 fever <NA> <NA> <NA>
251- #> 5 <NA> FALSE 2 67 <NA>
252- #> 6 <NA> TRUE 1 23 1.46
251+ #> 5 <NA> FALSE 6 86 <NA>
252+ #> 6 <NA> TRUE 3 26 1.65
253253 #> 7 15-29 fever <NA> <NA> <NA>
254- #> 8 <NA> FALSE 3 163 <NA>
255- #> 9 <NA> TRUE 2 91 1.19
254+ #> 8 <NA> FALSE 6 179 <NA>
255+ #> 9 <NA> TRUE 2 67 0.89
256256 #> 10 30-44 fever <NA> <NA> <NA>
257257 #> # ℹ 11 more rows
258258 #> # ℹ 5 more variables: `**95% CI**` <chr>, `**p-value**` <chr>,
0 commit comments