|
509 | 509 | "links": { |
510 | 510 | "pdf": "https://arxiv.org/abs/2209.03320", |
511 | 511 | "code": "https://github.com/sarahpratt/CuPL" |
512 | | - } |
| 512 | + }, |
| 513 | + "thumbnail": "/platypus.png" |
513 | 514 | }, |
514 | 515 | { |
515 | 516 | "title": "Agile Modeling: From Concept to Classifier in Minutes", |
|
537 | 538 | "venue": "ICCV 2023", |
538 | 539 | "links": { |
539 | 540 | "pdf": "https://arxiv.org/abs/2302.12948" |
540 | | - } |
| 541 | + }, |
| 542 | + "thumbnail": "/agile.png" |
541 | 543 | }, |
542 | 544 | { |
543 | 545 | "title": "Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes", |
|
556 | 558 | "venue": "ACL 2023 (Findings)", |
557 | 559 | "links": { |
558 | 560 | "pdf": "https://arxiv.org/pdf/2305.02301" |
559 | | - } |
| 561 | + }, |
| 562 | + "thumbnail": "/distill.png" |
560 | 563 | }, |
561 | 564 | { |
562 | 565 | "title": "CREPE: Can Vision-Language Foundation Models Reason Compositionally?", |
|
628 | 631 | "links": { |
629 | 632 | "pdf": "https://arxiv.org/abs/2304.12289", |
630 | 633 | "project page": "https://prior.allenai.org/projects/action-adaptive-policy" |
631 | | - } |
| 634 | + }, |
| 635 | + "thumbnail": "/forward.png" |
632 | 636 | }, |
633 | 637 | { |
634 | 638 | "title": "Impossibly Good Experts and How to Follow Them", |
|
643 | 647 | "venue": "ICLR 2023", |
644 | 648 | "links": { |
645 | 649 | "pdf": "https://openreview.net/forum?id=sciA_xgYofB" |
646 | | - } |
| 650 | + }, |
| 651 | + "thumbnail": "/experts.png" |
647 | 652 | }, |
648 | 653 | { |
649 | 654 | "title": "Neural Radiance Field Codebooks", |
|
660 | 665 | "venue": "ICLR 2023", |
661 | 666 | "links": { |
662 | 667 | "pdf": "https://arxiv.org/abs/2301.04101" |
663 | | - } |
| 668 | + }, |
| 669 | + "thumbnail": "/nrc.png" |
664 | 670 | }, |
665 | 671 | { |
666 | 672 | "title": "Editing Models with Task Arithmetic", |
|
696 | 702 | "venue": "TMLR", |
697 | 703 | "links": { |
698 | 704 | "pdf": "https://arxiv.org/abs/2210.11948" |
699 | | - } |
| 705 | + }, |
| 706 | + "thumbnail": "/lofi.png" |
700 | 707 | }, |
701 | 708 | { |
702 | 709 | "title": "Explanations can Reduce Overreliance on AI Systems during Decision-Making", |
|
712 | 719 | "venue": "CSCW 2023", |
713 | 720 | "links": { |
714 | 721 | "pdf": "https://arxiv.org/abs/2212.06823" |
715 | | - } |
| 722 | + }, |
| 723 | + "thumbnail": "/explanations.png" |
716 | 724 | }, |
717 | 725 | { |
718 | 726 | "title": "ELIGN: Expectation Alignment as a Multi-Agent Intrinsic Reward", |
|
0 commit comments