We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent a6d6728 commit 7fd4992Copy full SHA for 7fd4992
DESCRIPTION
@@ -4,9 +4,9 @@ Date: 2013-05-13
4
Title: Parallel Model-Based Clustering
5
Authors@R: c(person("Wei-Chen", "Chen", role = c("aut", "cre"), email =
6
"[email protected]"), person("George", "Ostrouchov", role = "aut"))
7
-Depends: R (>= 2.14.0), methods, MASS, MixSim, rlecuyer, pbdMPI (>=
8
- 0.1-6), pbdSLAP (>= 0.1-5), pbdBASE (>= 0.2-1), pbdDMAT (>=
9
- 0.2-1)
+Depends: R (>= 2.15.0), methods, rlecuyer, pbdMPI (>= 0.1-6), pbdSLAP
+ (>= 0.1-5), pbdBASE (>= 0.2-1), pbdDMAT (>= 0.2-1)
+Enhances: MixSim
10
LazyLoad: yes
11
LazyData: yes
12
Description: The pmclust aims to utilize model-based clustering (unsupervised)
@@ -25,7 +25,7 @@ URL: http://r-pbd.org/
25
BugReports: http://group.r-pbd.org/
26
MailingList: Please send questions and comments regarding pbdR to
27
[email protected]
28
-Packaged: 2013-06-19 18:32:45 UTC; snoweye
+Packaged: 2013-06-19 20:37:06 UTC; snoweye
29
Author: Wei-Chen Chen [aut, cre],
30
George Ostrouchov [aut]
31
Maintainer: Wei-Chen Chen <[email protected]>
NAMESPACE
@@ -1,6 +1,6 @@
1
useDynLib(pmclust)
2
3
-import(methods, MASS, MixSim, rlecuyer, pbdMPI, pbdSLAP, pbdBASE, pbdDMAT)
+import(methods, rlecuyer, pbdMPI, pbdSLAP, pbdBASE, pbdDMAT)
# exportPattern("^[[:alpha:]]+")
# exportPattern("^[\\.]")
R/00_pmclust.r
@@ -21,7 +21,7 @@ pmclust <- function(X = NULL, K = 2, MU = NULL,
21
}
22
# Check matrix type if dmat algorithm is used.
23
if(B & algorithm[1] %in% .PMC.CT$algorithm.dmat){
24
- if(! eval(is.ddmatrix(X.dmat), envir = .GlobalEnv)){
+ if(! is.ddmatrix(.GlobalEnv$X.dmat)){
comm.stop("X.dmat is not a ddmatrix.")
@@ -86,7 +86,7 @@ pkmeans <- function(X = NULL, K = 2, MU = NULL,
86
87
88
89
90
91
92
R/00_pmclust_internal.r
@@ -16,7 +16,7 @@ pmclust.internal <- function(X = NULL, K = 2, MU = NULL,
16
if(is.null(X)){
17
if(exists("X.dmat", envir = .GlobalEnv)){
18
# Assign X to .pmclustEnv and convert to spmdr.
19
- convert.data(X.dmat, method.own.X[1], rank.own.X, comm)
+ convert.data(.GlobalEnv$X.dmat, method.own.X[1], rank.own.X, comm)
20
} else{
# Assume X.spmd in .GlobalEnv and no need for converting or check.
R/00_pmclust_internal_dmat.r
@@ -11,7 +11,7 @@ pmclust.internal.dmat <- function(X = NULL, K = 2, MU = NULL,
# Check X.
13
14
15
# Assume X.dmat in .GlobalEnv and no need for converting.
R/pm_generate_MixSim.r
@@ -5,8 +5,8 @@ generate.MixSim.spmd <- function(N, p, K, MixSim.obj = NULL,
### Obtain a set of parameters from MixSim.
if(spmd.comm.rank() == 0){
if(is.null(MixSim.obj)){
- MixSim.obj <- MixSim(BarOmega, MaxOmega, K = K, p = p, PiLow = PiLow,
- sph = sph, hom = hom)
+ MixSim.obj <- MixSim:::MixSim(BarOmega, MaxOmega, K = K, p = p,
+ PiLow = PiLow, sph = sph, hom = hom)
if(class(MixSim.obj) != "MixSim"){
stop("MixSim.obj is not a MixSim class.")
@@ -20,7 +20,7 @@ generate.MixSim.spmd <- function(N, p, K, MixSim.obj = NULL,
N.allspmds <- unlist(lapply(get.jid(N, all = TRUE), length),
use.names = FALSE)
N.spmd <- N.allspmds[spmd.comm.rank() + 1]
- ret.dataset <- simdataset(N.spmd, MixSim.obj$Pi, MixSim.obj$Mu, MixSim.obj$S)
+ ret.dataset <- MixSim:::simdataset(N.spmd, MixSim.obj$Pi, MixSim.obj$Mu, MixSim.obj$S)
data.simu <- ret.dataset$X
data.class <- ret.dataset$id
inst/doc/pmclust-guide.pdf
0 Bytes
man/00_pmclust-package.Rd
@@ -85,9 +85,6 @@
85
\code{\link{apecma.step}},
\code{\link{kmeans.step}}. \cr
\code{\link{em.step.dmat}},
- \code{\link{aecm.step.dmat}},
- \code{\link{apecm.step.dmat}}, \cr
- \code{\link{apecma.step.dmat}},
\code{\link{kmeans.step.dmat}}. \cr
93
\examples{
man/30-em_like.Rd
@@ -5,9 +5,6 @@
\alias{apecma.step}
\alias{kmeans.step}
\alias{em.step.dmat}
-\alias{aecm.step.dmat}
-\alias{apecm.step.dmat}
-\alias{apecma.step.dmat}
\alias{kmeans.step.dmat}
\title{EM-like Steps for SPMD}
\description{
@@ -24,9 +21,6 @@
kmeans.step(PARAM.org)
em.step.dmat(PARAM.org)
- aecm.step.dmat(PARAM.org)
- apecm.step.dmat(PARAM.org)
- apecma.step.dmat(PARAM.org)
kmeans.step.dmat(PARAM.org)
32
\arguments{
man/41-get.N.CLASS.Rd
@@ -17,10 +17,11 @@
get.N.CLASS.dmat(K)
- get.CLASS()
+ get.CLASS(PARAM)
\item{K}{the total number of clusters.}
+ \item{PARAM}{a set of parameters.}
\details{
The final results are distributed in all processors including the total
0 commit comments