Skip to content

Commit ab000dc

Browse files
authored
Argmax enhancement in case of inner dim reduce (#2583)
1 parent 4c5bdf7 commit ab000dc

36 files changed

+1375
-234
lines changed

docs/apireference.rst

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,4 +23,5 @@ API Reference
2323
reduction
2424
layernorm
2525
sum
26+
argmax
2627

docs/argmax.rst

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
2+
Argmax Layer(experimental)
3+
========================
4+
5+
The argmax functions.
6+
Find the index of the maximum value of a tensor across dimensions.
7+
To enable this, define MIOPEN_BETA_API before including miopen.h.
8+
9+
10+
miopenArgmaxForward
11+
----------------------------------
12+
13+
.. doxygenfunction:: miopenArgmaxForward
14+

driver/argmax_driver.hpp

Lines changed: 340 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,340 @@
1+
/*******************************************************************************
2+
*
3+
* MIT License
4+
*
5+
* Copyright (c) 2023 Advanced Micro Devices, Inc.
6+
*
7+
* Permission is hereby granted, free of charge, to any person obtaining a copy
8+
* of this software and associated documentation files (the "Software"), to deal
9+
* in the Software without restriction, including without limitation the rights
10+
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11+
* copies of the Software, and to permit persons to whom the Software is
12+
* furnished to do so, subject to the following conditions:
13+
*
14+
* The above copyright notice and this permission notice shall be included in all
15+
* copies or substantial portions of the Software.
16+
*
17+
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18+
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19+
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20+
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21+
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22+
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23+
* SOFTWARE.
24+
*
25+
*******************************************************************************/
26+
#ifndef GUARD_MIOPEN_ARGMAX_DRIVER_HPP
27+
#define GUARD_MIOPEN_ARGMAX_DRIVER_HPP
28+
29+
#include "InputFlags.hpp"
30+
#include "driver.hpp"
31+
#include "tensor_driver.hpp"
32+
#include "timer.hpp"
33+
#include "random.hpp"
34+
#include <algorithm>
35+
#include <cfloat>
36+
#include <cstdlib>
37+
#include <memory>
38+
#include <miopen/miopen.h>
39+
#include <miopen/tensor.hpp>
40+
#include <numeric>
41+
#include <vector>
42+
#include <../test/tensor_holder.hpp>
43+
#include <../test/verify.hpp>
44+
45+
template <typename Tgpu, typename Tcheck>
46+
int32_t mloArgmaxForwardRunHost(miopenTensorDescriptor_t inputDesc,
47+
miopenTensorDescriptor_t outputDesc,
48+
Tgpu* input,
49+
int32_t* outputhost,
50+
int32_t dim)
51+
{
52+
auto input_dims = miopen::deref(inputDesc).GetLengths();
53+
auto output_dims = miopen::deref(outputDesc).GetLengths();
54+
55+
int32_t reduce_size = static_cast<int32_t>(input_dims[dim]);
56+
auto output_numel =
57+
std::accumulate(output_dims.begin(), output_dims.end(), 1L, std::multiplies<int64_t>());
58+
59+
auto inner_size = std::accumulate(
60+
input_dims.begin() + dim + 1, input_dims.end(), 1ULL, std::multiplies<uint64_t>());
61+
62+
int32_t ret = 0;
63+
64+
for(size_t o = 0; o < output_numel; o++)
65+
{
66+
size_t input_idx = (o / inner_size) * inner_size * reduce_size + o % inner_size;
67+
68+
int32_t max_idx = 0;
69+
Tcheck max = static_cast<Tcheck>(input[input_idx]);
70+
71+
for(int32_t i = 1; i < reduce_size; i++)
72+
{
73+
input_idx += inner_size;
74+
Tcheck val = static_cast<Tcheck>(input[input_idx]);
75+
if(max < val)
76+
{
77+
max = val;
78+
max_idx = i;
79+
}
80+
}
81+
outputhost[o] = max_idx;
82+
}
83+
return ret;
84+
}
85+
86+
template <typename Tgpu, typename Tref>
87+
class ArgmaxDriver : public Driver
88+
{
89+
public:
90+
ArgmaxDriver() : Driver()
91+
{
92+
miopenCreateTensorDescriptor(&inputDesc);
93+
miopenCreateTensorDescriptor(&outputDesc);
94+
95+
data_type = miopen_type<Tgpu>{};
96+
}
97+
98+
int AddCmdLineArgs() override;
99+
int ParseCmdLineArgs(int argc, char* argv[]) override;
100+
InputFlags& GetInputFlags() override { return inflags; }
101+
102+
int GetandSetData() override;
103+
std::vector<int> GetInputTensorLengthsFromCmdLine();
104+
105+
int AllocateBuffersAndCopy() override;
106+
107+
int RunForwardGPU() override;
108+
int RunForwardCPU();
109+
110+
int RunBackwardGPU() override;
111+
112+
int VerifyBackward() override;
113+
int VerifyForward() override;
114+
~ArgmaxDriver() override
115+
{
116+
miopenDestroyTensorDescriptor(inputDesc);
117+
miopenDestroyTensorDescriptor(outputDesc);
118+
}
119+
120+
private:
121+
InputFlags inflags;
122+
123+
int forw;
124+
125+
miopenTensorDescriptor_t inputDesc;
126+
miopenTensorDescriptor_t outputDesc;
127+
128+
std::unique_ptr<GPUMem> in_dev;
129+
std::unique_ptr<GPUMem> out_dev;
130+
131+
std::vector<Tgpu> in;
132+
std::vector<int> out;
133+
std::vector<int> outhost;
134+
135+
int dim;
136+
};
137+
138+
template <typename Tgpu, typename Tref>
139+
int ArgmaxDriver<Tgpu, Tref>::ParseCmdLineArgs(int argc, char* argv[])
140+
{
141+
inflags.Parse(argc, argv);
142+
143+
if(inflags.GetValueInt("time") == 1)
144+
{
145+
miopenEnableProfiling(GetHandle(), true);
146+
}
147+
return miopenStatusSuccess;
148+
}
149+
150+
template <typename Tgpu, typename Tref>
151+
int ArgmaxDriver<Tgpu, Tref>::GetandSetData()
152+
{
153+
std::vector<int> in_len = GetInputTensorLengthsFromCmdLine();
154+
dim = inflags.GetValueInt("DimToReduce");
155+
156+
SetTensorNd(inputDesc, in_len, data_type);
157+
158+
std::vector<int> out_len;
159+
160+
for(int i = 0; i < in_len.size(); i++)
161+
{
162+
if(i != dim)
163+
{
164+
out_len.push_back(in_len[i]);
165+
}
166+
}
167+
168+
if(out_len.empty())
169+
out_len.push_back(1);
170+
171+
SetTensorNd(outputDesc, out_len, miopenInt32);
172+
173+
return 0;
174+
}
175+
176+
template <typename Tgpu, typename Tref>
177+
int ArgmaxDriver<Tgpu, Tref>::AddCmdLineArgs()
178+
{
179+
inflags.AddInputFlag("forw", 'F', "1", "Run only Forward Argmax (Default=1)", "int");
180+
inflags.AddInputFlag("batchsize", 'n', "21", "Mini-batch size (Default=100)", "int");
181+
inflags.AddInputFlag("in_channels", 'c', "500", "Number of Input Channels (Default=3)", "int");
182+
inflags.AddInputFlag("in_d", 'D', "0", "Input Depth (Default=0)", "int");
183+
inflags.AddInputFlag("in_h", 'H', "0", "Input Height (Default=32)", "int");
184+
inflags.AddInputFlag("in_w", 'W', "375", "Input Width (Default=32)", "int");
185+
inflags.AddInputFlag(
186+
"DimToReduce", 'R', "0", "The indice of the dimensions to be reduced(Default=1)", "int");
187+
inflags.AddInputFlag("iter", 'i', "10", "Number of Iterations (Default=10)", "int");
188+
inflags.AddInputFlag("verify", 'V', "1", "Verify Each Layer (Default=1)", "int");
189+
inflags.AddInputFlag("time", 't', "0", "Time Each Layer (Default=0)", "int");
190+
inflags.AddInputFlag(
191+
"wall", 'w', "0", "Wall-clock Time Each Layer, Requires time == 1 (Default=0)", "int");
192+
193+
return miopenStatusSuccess;
194+
}
195+
196+
template <typename Tgpu, typename Tref>
197+
std::vector<int> ArgmaxDriver<Tgpu, Tref>::GetInputTensorLengthsFromCmdLine()
198+
{
199+
int in_n = inflags.GetValueInt("batchsize");
200+
int in_c = inflags.GetValueInt("in_channels");
201+
int in_w = inflags.GetValueInt("in_w");
202+
int in_h = inflags.GetValueInt("in_h");
203+
int in_d = inflags.GetValueInt("in_d");
204+
205+
if((in_n != 0) && (in_c != 0) && (in_d != 0) && (in_h != 0) && (in_w != 0))
206+
{
207+
return std::vector<int>({in_n, in_c, in_d, in_h, in_w});
208+
}
209+
else if((in_n != 0) && (in_c != 0) && (in_h != 0) && (in_w != 0))
210+
{
211+
return std::vector<int>({in_n, in_c, in_h, in_w});
212+
}
213+
else if((in_n != 0) && (in_c != 0) && (in_w != 0))
214+
{
215+
return std::vector<int>({in_n, in_c, in_w});
216+
}
217+
else if((in_n != 0) && (in_w != 0))
218+
{
219+
return std::vector<int>({in_n, in_w});
220+
}
221+
else if(in_n != 0)
222+
{
223+
return std::vector<int>({in_n});
224+
}
225+
else
226+
{
227+
std::cerr << "Error Input Tensor Lengths\n" << std::endl;
228+
return std::vector<int>({0});
229+
}
230+
}
231+
232+
template <typename Tgpu, typename Tref>
233+
int ArgmaxDriver<Tgpu, Tref>::AllocateBuffersAndCopy()
234+
{
235+
size_t in_sz = GetTensorSize(inputDesc);
236+
size_t out_sz = GetTensorSize(outputDesc);
237+
238+
uint32_t ctx = 0;
239+
240+
in_dev = std::unique_ptr<GPUMem>(new GPUMem(ctx, in_sz, sizeof(Tgpu)));
241+
out_dev = std::unique_ptr<GPUMem>(new GPUMem(ctx, out_sz, sizeof(int)));
242+
243+
in = std::vector<Tgpu>(in_sz, static_cast<Tgpu>(0));
244+
out = std::vector<int>(out_sz, static_cast<int>(0));
245+
outhost = std::vector<int>(out_sz, static_cast<int>(0));
246+
247+
for(int i = 0; i < in_sz; i++)
248+
{
249+
in[i] = prng::gen_A_to_B<Tgpu>(static_cast<Tgpu>(0.0), static_cast<Tgpu>(1.0));
250+
}
251+
252+
if(in_dev->ToGPU(GetStream(), in.data()) != 0)
253+
std::cerr << "Error copying (in) to GPU, size: " << in_dev->GetSize() << std::endl;
254+
255+
if(out_dev->ToGPU(GetStream(), out.data()) != 0)
256+
std::cerr << "Error copying (out) to GPU, size: " << out_dev->GetSize() << std::endl;
257+
258+
return miopenStatusSuccess;
259+
}
260+
261+
template <typename Tgpu, typename Tref>
262+
int ArgmaxDriver<Tgpu, Tref>::RunForwardGPU()
263+
{
264+
float kernel_total_time = 0;
265+
float kernel_first_time = 0;
266+
267+
Timer t;
268+
START_TIME
269+
270+
for(int i = 0; i < inflags.GetValueInt("iter"); i++)
271+
{
272+
miopenArgmaxForward(
273+
GetHandle(), inputDesc, in_dev->GetMem(), dim, outputDesc, out_dev->GetMem());
274+
275+
float time = 0;
276+
miopenGetKernelTime(GetHandle(), &time);
277+
kernel_total_time += time;
278+
if(i == 0)
279+
kernel_first_time = time;
280+
}
281+
282+
if(inflags.GetValueInt("time") == 1)
283+
{
284+
STOP_TIME
285+
int iter = inflags.GetValueInt("iter");
286+
if(WALL_CLOCK)
287+
std::cout << "Wall-clock Time Forward Argmax Elapsed: " << t.gettime_ms() / iter
288+
<< " ms\n";
289+
290+
float kernel_average_time =
291+
iter > 1 ? (kernel_total_time - kernel_first_time) / (iter - 1) : kernel_first_time;
292+
std::cout << "GPU Kernel Time Forward Argmax Elapsed: " << kernel_average_time << " ms\n";
293+
}
294+
295+
if(out_dev->FromGPU(GetStream(), out.data()) != 0)
296+
std::cerr << "Error copying (out_dev) from GPU, size: " << out_dev->GetSize() << std::endl;
297+
298+
return miopenStatusSuccess;
299+
}
300+
301+
template <typename Tgpu, typename Tref>
302+
int ArgmaxDriver<Tgpu, Tref>::RunForwardCPU()
303+
{
304+
mloArgmaxForwardRunHost<Tgpu, Tref>(inputDesc, outputDesc, in.data(), outhost.data(), dim);
305+
306+
return miopenStatusSuccess;
307+
}
308+
309+
template <typename Tgpu, typename Tref>
310+
int ArgmaxDriver<Tgpu, Tref>::RunBackwardGPU()
311+
{
312+
return miopenStatusSuccess;
313+
}
314+
315+
template <typename Tgpu, typename Tref>
316+
int ArgmaxDriver<Tgpu, Tref>::VerifyForward()
317+
{
318+
RunForwardCPU();
319+
auto error = miopen::rms_range(outhost, out);
320+
321+
if(!std::isfinite(error) || std::abs(static_cast<float>(error)) != 0.0f)
322+
{
323+
std::cout << "Forward Argmax FAILED: Result does not equal" << std::endl;
324+
return EC_VerifyFwd;
325+
}
326+
else
327+
{
328+
std::cout << "Forward Argmax Verifies on CPU and GPU (err=" << error << ")\n";
329+
}
330+
331+
return miopenStatusSuccess;
332+
}
333+
334+
template <typename Tgpu, typename Tref>
335+
int ArgmaxDriver<Tgpu, Tref>::VerifyBackward()
336+
{
337+
return miopenStatusSuccess;
338+
}
339+
340+
#endif // GUARD_MIOPEN_ARGMAX_DRIVER_HPP

driver/driver.hpp

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,8 @@ inline void PadBufferSize(size_t& sz, int datatype_sz)
150150
printf("Supported Base Arguments: conv[fp16|int8|bfp16|fp8|bfp8], CBAInfer[fp16], "
151151
"pool[fp16], lrn[fp16], "
152152
"activ[fp16], softmax[fp16], bnorm[fp16], rnn[fp16], gemm[fp16], ctc, dropout[fp16], "
153-
"tensorop[fp16], reduce[fp16|fp64], layernorm[bfp16|fp16], sum[bfp16|fp16]\n");
153+
"tensorop[fp16], reduce[fp16|fp64], layernorm[bfp16|fp16], sum[bfp16|fp16], "
154+
"argmax[bfp16|fp16]\n");
154155
exit(0); // NOLINT (concurrency-mt-unsafe)
155156
}
156157

@@ -173,7 +174,8 @@ inline std::string ParseBaseArg(int argc, char* argv[])
173174
arg != "dropout" && arg != "dropoutfp16" && arg != "tensorop" && arg != "tensoropfp16" &&
174175
arg != "reduce" && arg != "reducefp16" && arg != "reducefp64" && arg != "layernorm" &&
175176
arg != "layernormfp16" && arg != "layernormbfp16" && arg != "sum" && arg != "sumfp16" &&
176-
arg != "sumbfp16" && arg != "--version")
177+
arg != "sumbfp16" && arg != "argmax" && arg != "argmaxfp16" && arg != "argmaxbfp16" &&
178+
arg != "--version")
177179
{
178180
printf("FAILED: Invalid Base Input Argument\n");
179181
Usage();

0 commit comments

Comments
 (0)