Skip to content

Commit e29b93f

Browse files
Merge pull request jax-ml#24421 from jakevdp:cross-doc
PiperOrigin-RevId: 688175417
2 parents fe83d88 + a1140e9 commit e29b93f

File tree

1 file changed

+73
-1
lines changed

1 file changed

+73
-1
lines changed

jax/_src/numpy/lax_numpy.py

Lines changed: 73 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -9544,10 +9544,82 @@ def outer(a: ArrayLike, b: ArrayLike, out: None = None) -> Array:
95449544
a, b = util.promote_dtypes(a, b)
95459545
return ravel(a)[:, None] * ravel(b)[None, :]
95469546

9547-
@util.implements(np.cross)
9547+
95489548
@partial(jit, static_argnames=('axisa', 'axisb', 'axisc', 'axis'))
95499549
def cross(a, b, axisa: int = -1, axisb: int = -1, axisc: int = -1,
95509550
axis: int | None = None):
9551+
r"""Compute the (batched) cross product of two arrays.
9552+
9553+
JAX implementation of :func:`numpy.cross`.
9554+
9555+
This computes the 2-dimensional or 3-dimensional cross product,
9556+
9557+
.. math::
9558+
9559+
c = a \times b
9560+
9561+
In 3 dimensions, ``c`` is a length-3 array. In 2 dimensions, ``c`` is
9562+
a scalar.
9563+
9564+
Args:
9565+
a: N-dimensional array. ``a.shape[axisa]`` indicates the dimension of
9566+
the cross product, and must be 2 or 3.
9567+
b: N-dimensional array. Must have ``b.shape[axisb] == a.shape[axisb]``,
9568+
and other dimensions of ``a`` and ``b`` must be broadcast compatible.
9569+
axisa: specicy the axis of ``a`` along which to compute the cross product.
9570+
axisb: specicy the axis of ``b`` along which to compute the cross product.
9571+
axisc: specicy the axis of ``c`` along which the cross product result
9572+
will be stored.
9573+
axis: if specified, this overrides ``axisa``, ``axisb``, and ``axisc``
9574+
with a single value.
9575+
9576+
Returns:
9577+
The array ``c`` containing the (batched) cross product of ``a`` and ``b``
9578+
along the specified axes.
9579+
9580+
See also:
9581+
- :func:`jax.numpy.linalg.cross`: an array API compatible function for
9582+
computing cross products over 3-vectors.
9583+
9584+
Examples:
9585+
A 2-dimensional cross product returns a scalar:
9586+
9587+
>>> a = jnp.array([1, 2])
9588+
>>> b = jnp.array([3, 4])
9589+
>>> jnp.cross(a, b)
9590+
Array(-2, dtype=int32)
9591+
9592+
A 3-dimensional cross product returns a length-3 vector:
9593+
9594+
>>> a = jnp.array([1, 2, 3])
9595+
>>> b = jnp.array([4, 5, 6])
9596+
>>> jnp.cross(a, b)
9597+
Array([-3, 6, -3], dtype=int32)
9598+
9599+
With multi-dimensional inputs, the cross-product is computed along
9600+
the last axis by default. Here's a batched 3-dimensional cross
9601+
product, operating on the rows of the inputs:
9602+
9603+
>>> a = jnp.array([[1, 2, 3],
9604+
... [3, 4, 3]])
9605+
>>> b = jnp.array([[2, 3, 2],
9606+
... [4, 5, 6]])
9607+
>>> jnp.cross(a, b)
9608+
Array([[-5, 4, -1],
9609+
[ 9, -6, -1]], dtype=int32)
9610+
9611+
Specifying axis=0 makes this a batched 2-dimensional cross product,
9612+
operating on the columns of the inputs:
9613+
9614+
>>> jnp.cross(a, b, axis=0)
9615+
Array([-2, -2, 12], dtype=int32)
9616+
9617+
Equivalently, we can independently specify the axis of the inputs ``a``
9618+
and ``b`` and the output ``c``:
9619+
9620+
>>> jnp.cross(a, b, axisa=0, axisb=0, axisc=0)
9621+
Array([-2, -2, 12], dtype=int32)
9622+
"""
95519623
# TODO(jakevdp): NumPy 2.0 deprecates 2D inputs. Follow suit here.
95529624
util.check_arraylike("cross", a, b)
95539625
if axis is not None:

0 commit comments

Comments
 (0)