|
| 1 | +# Owner(s): ["module: custom-operators"] |
| 2 | + |
| 3 | +import torch |
| 4 | +from torch._dynamo.test_case import run_tests, TestCase |
| 5 | +from torch._library.opaque_object import register_opaque_type |
| 6 | + |
| 7 | + |
| 8 | +class OpaqueQueue: |
| 9 | + def __init__(self, queue: list[torch.Tensor], init_tensor_: torch.Tensor) -> None: |
| 10 | + super().__init__() |
| 11 | + self.queue = queue |
| 12 | + self.init_tensor_ = init_tensor_ |
| 13 | + |
| 14 | + def push(self, tensor: torch.Tensor) -> None: |
| 15 | + self.queue.append(tensor) |
| 16 | + |
| 17 | + def pop(self) -> torch.Tensor: |
| 18 | + if len(self.queue) > 0: |
| 19 | + return self.queue.pop(0) |
| 20 | + return self.init_tensor_ |
| 21 | + |
| 22 | + def size(self) -> int: |
| 23 | + return len(self.queue) |
| 24 | + |
| 25 | + |
| 26 | +class TestOpaqueObject(TestCase): |
| 27 | + def setUp(self): |
| 28 | + self.lib = torch.library.Library("_TestOpaqueObject", "FRAGMENT") # noqa: TOR901 |
| 29 | + |
| 30 | + register_opaque_type(OpaqueQueue, "_TestOpaqueObject_OpaqueQueue") |
| 31 | + |
| 32 | + torch.library.define( |
| 33 | + "_TestOpaqueObject::queue_push", |
| 34 | + "(_TestOpaqueObject_OpaqueQueue a, Tensor b) -> ()", |
| 35 | + tags=torch.Tag.pt2_compliant_tag, |
| 36 | + lib=self.lib, |
| 37 | + ) |
| 38 | + |
| 39 | + @torch.library.impl( |
| 40 | + "_TestOpaqueObject::queue_push", "CompositeExplicitAutograd", lib=self.lib |
| 41 | + ) |
| 42 | + def push_impl(queue: OpaqueQueue, b: torch.Tensor) -> None: |
| 43 | + assert isinstance(queue, OpaqueQueue) |
| 44 | + queue.push(b) |
| 45 | + |
| 46 | + self.lib.define( |
| 47 | + "queue_pop(_TestOpaqueObject_OpaqueQueue a) -> Tensor", |
| 48 | + ) |
| 49 | + |
| 50 | + def pop_impl(queue: OpaqueQueue) -> torch.Tensor: |
| 51 | + assert isinstance(queue, OpaqueQueue) |
| 52 | + return queue.pop() |
| 53 | + |
| 54 | + self.lib.impl("queue_pop", pop_impl, "CompositeExplicitAutograd") |
| 55 | + |
| 56 | + @torch.library.custom_op( |
| 57 | + "_TestOpaqueObject::queue_size", |
| 58 | + mutates_args=[], |
| 59 | + ) |
| 60 | + def size_impl(queue: OpaqueQueue) -> int: |
| 61 | + assert isinstance(queue, OpaqueQueue) |
| 62 | + return queue.size() |
| 63 | + |
| 64 | + super().setUp() |
| 65 | + |
| 66 | + def tearDown(self): |
| 67 | + self.lib._destroy() |
| 68 | + |
| 69 | + super().tearDown() |
| 70 | + |
| 71 | + def test_ops(self): |
| 72 | + queue = OpaqueQueue([], torch.zeros(3)) |
| 73 | + |
| 74 | + torch.ops._TestOpaqueObject.queue_push(queue, torch.ones(3) + 1) |
| 75 | + size = torch.ops._TestOpaqueObject.queue_size(queue) |
| 76 | + self.assertEqual(size, 1) |
| 77 | + popped = torch.ops._TestOpaqueObject.queue_pop(queue) |
| 78 | + self.assertEqual(popped, torch.ones(3) + 1) |
| 79 | + size = torch.ops._TestOpaqueObject.queue_size(queue) |
| 80 | + self.assertEqual(size, 0) |
| 81 | + |
| 82 | + |
| 83 | +if __name__ == "__main__": |
| 84 | + run_tests() |
0 commit comments