-
Notifications
You must be signed in to change notification settings - Fork 75
Description
🐛 Describe the bug
In, aten/src/ATen/native/cuda/TensorTransformations.cu, roll_cuda_kernel needs to be made into a grid stride loop to handle big inputs. The following breaks:
import torch
N = 21913096
input_tensor_torch = torch.randn(1, 2, N, 98, device='cuda')
output = input_tensor_torch.roll(-1, dims=1)
If you make N 21913095, it works.
Versions
Collecting environment information...
PyTorch version: N/A
Is debug build: N/A
CUDA used to build PyTorch: N/A
ROCM used to build PyTorch: N/A
OS: Ubuntu 24.04.3 LTS (x86_64)
GCC version: (Ubuntu 14.2.0-4ubuntu2~24.04) 14.2.0
Clang version: Could not collect
CMake version: version 3.27.4
Libc version: glibc-2.39
Python version: 3.12.11 | packaged by conda-forge | (main, Jun 4 2025, 14:45:31) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.8.0-79-generic-x86_64-with-glibc2.39
Is CUDA available: N/A
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Could not collect
Is XPU available: N/A
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: N/A
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 256
On-line CPU(s) list: 0-255
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9575F 64-Core Processor
CPU family: 26
Model: 2
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU(s) scaling MHz: 48%
CPU max MHz: 3300.0000
CPU min MHz: 1500.0000
BogoMIPS: 6599.98
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx_vnni avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc amd_ibpb_ret arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid bus_lock_detect movdiri movdir64b overflow_recov succor smca fsrm avx512_vp2intersect flush_l1d debug_swap
Virtualization: AMD-V
L1d cache: 6 MiB (128 instances)
L1i cache: 4 MiB (128 instances)
L2 cache: 128 MiB (128 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-63,128-191
NUMA node1 CPU(s): 64-127,192-255
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] pytorch-lightning==2.5.5
[pip3] torch==2.9.0a0+gitd6ae9ac
[pip3] torch_cluster==1.6.3
[pip3] torch-geometric==2.6.1
[pip3] torchinfo==1.8.0
[pip3] torchmetrics==1.8.2
[pip3] torchvision==0.24.0a0+a8dc530
[conda] numpy 1.26.4 pypi_0 pypi
[conda] pytorch-lightning 2.5.5 pypi_0 pypi
[conda] torch 2.9.0a0+gitd6ae9ac pypi_0 pypi
[conda] torch-cluster 1.6.3 pypi_0 pypi
[conda] torch-geometric 2.6.1 pypi_0 pypi
[conda] torchinfo 1.8.0 pypi_0 pypi
[conda] torchmetrics 1.8.2 pypi_0 pypi
[conda] torchvision 0.24.0a0+a8dc530 pypi_0 pypi