Skip to content

Commit 3403d50

Browse files
[CI] Added gfx942 architecture to the 'Tune MLIR kernels' stage (#1733)
* [CI] Added gfx942 architecture to the 'Tune MLIR kernels' stage for weekly CI and removed gfx1030 due to its decreased relevance. * Add GFX942 to PerfDB archiving. * Fix formatting. * Added MI300 for benchmark and performance stage in nightly runs. * Updated reportUtils.py to replace deprecated styler.applymap with styler.map. Modified perfRunner.py to replace 'NaN' with np.nan in fillna calls to avoid Warnings. * Updated archivePerfDB to handle only gfx908, gfx90a, and gfx942
1 parent bcce8fb commit 3403d50

File tree

3 files changed

+18
-18
lines changed

3 files changed

+18
-18
lines changed

mlir/utils/jenkins/Jenkinsfile

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -334,13 +334,13 @@ boolean shouldRunFromChip(String chip) {
334334
void archivePerfDB() {
335335
// Note: add additional architectures here
336336
dir ('build/perfDB') {
337-
if (params.canXdlops) {
338-
unstash name: "MLIR-PerfDB-gfx908"
339-
unstash name: "MLIR-PerfDB-gfx90a"
340-
if (!params.disableNavi21)
341-
unstash name: "MLIR-PerfDB-gfx1030"
342-
} else {
343-
unstash name: "MLIR-PerfDB-vanilla"
337+
def architectures = params.canXdlops ? ['gfx908', 'gfx90a', 'gfx942'] : ['vanilla']
338+
for (arch in architectures) {
339+
try {
340+
unstash name: "MLIR-PerfDB-${arch}"
341+
} catch (Exception e) {
342+
echo "No stash found for MLIR-PerfDB-${arch}, skipping."
343+
}
344344
}
345345
sh 'date --utc +%Y-%m-%d >tuning-date'
346346
}
@@ -521,11 +521,11 @@ pipeline {
521521
}
522522
steps {
523523
script {
524-
build_fixedE2ETests("${CODEPATH}")
525-
preMergeCheck("${CODEPATH}")
526-
timeout(time: 60, activity: true, unit: 'MINUTES') {
527-
sh 'cd build; ninja check-mlir check-rocmlir'
528-
}
524+
build_fixedE2ETests("${CODEPATH}")
525+
preMergeCheck("${CODEPATH}")
526+
timeout(time: 60, activity: true, unit: 'MINUTES') {
527+
sh 'cd build; ninja check-mlir check-rocmlir'
528+
}
529529
}
530530
}
531531
}
@@ -539,7 +539,7 @@ pipeline {
539539
}
540540
steps {
541541
script {
542-
check_randomE2ETests("${CODEPATH}")
542+
check_randomE2ETests("${CODEPATH}")
543543
}
544544
}
545545
}
@@ -685,7 +685,7 @@ pipeline {
685685
axes {
686686
axis {
687687
name 'ARCH'
688-
values 'gfx908', 'gfx90a', 'gfx1030'
688+
values 'gfx908', 'gfx90a', 'gfx942'
689689
}
690690
}
691691
agent {
@@ -812,7 +812,7 @@ pipeline {
812812
axes {
813813
axis {
814814
name 'CHIP'
815-
values 'gfx908', 'gfx90a', 'gfx1030', 'gfx1101'
815+
values 'gfx908', 'gfx90a', 'gfx942', 'gfx1030', 'gfx1101'
816816
}
817817
}
818818
when {

mlir/utils/performance/perfRunner.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1011,7 +1011,7 @@ def generatePerformanceResults(configs, confClass, paths: Paths, arch, numCU, tu
10111011
reportFile = reportUtils.PERF_REPORT_FILE['CK']
10121012
else:
10131013
reportFile = reportUtils.PERF_REPORT_FILE['MIOpen']
1014-
df.fillna('NaN', inplace=True)
1014+
df.fillna(np.nan, inplace=True)
10151015
df.to_csv(chip + '_' + reportFile, index=False)
10161016

10171017
def getSolverName(testVector, arch, numCU):
@@ -1205,7 +1205,7 @@ def benchmarkFusionKernels(test_dir, paths: Paths, arch, numCU, tuningDb: MaybeT
12051205
perfResults[testVector] = oneEntry
12061206

12071207
df = pd.DataFrame(perfResults.values())
1208-
df.fillna('NaN', inplace=True)
1208+
df.fillna(np.nan, inplace=True)
12091209
df.rename(columns={'TFlops': 'Fusion TFlops'}, inplace=True)
12101210
df.to_csv(chip + '_' + op + '_' + reportUtils.PERF_REPORT_FUSION_FILE, index=False)
12111211

mlir/utils/performance/reportUtils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@ def setCommonStyles(styler: 'pd.io.formats.style.Styler', speedupCols: list, col
7373
styler.format(precision=ROUND_DIGITS, na_rep="---")
7474
for col in speedupCols:
7575
if col in styler.columns:
76-
styler.applymap(colorizer, subset=[col])
76+
styler.map(colorizer, subset=[col])
7777

7878
# Adapted from
7979
# https://stackoverflow.com/questions/54405704/check-if-all-values-in-dataframe-column-are-the-same

0 commit comments

Comments
 (0)