@@ -766,7 +766,7 @@ def testDepthwiseMaxPoolInvalidConfigs(self):
766766 # The following are tests that verify that the CPU and GPU implementations
767767 # produce the same results.
768768 def _CompareMaxPoolingFwd (self , input_shape , ksize , strides , padding ):
769- for dtype in [np .float32 , np .float16 ] + [np .float64 ]
769+ for dtype in [np .float32 , np .float16 ] + [np .float64 ] \
770770 if not test .is_built_with_rocm () else []:
771771 tensor_input = np .random .rand (* input_shape ).astype (dtype )
772772 with self .cached_session (use_gpu = True ):
@@ -781,7 +781,7 @@ def _CompareMaxPoolingFwd(self, input_shape, ksize, strides, padding):
781781
782782 def _CompareMaxPoolingBk (self , input_shape , output_shape , ksize , strides ,
783783 padding ):
784- for dtype in [np .float32 , np .float16 ] + [np .float64 ]
784+ for dtype in [np .float32 , np .float16 ] + [np .float64 ] \
785785 if not test .is_built_with_rocm () else []:
786786 # Generate numbers in a narrow range, so that there are many duplicates
787787 # in the input.
@@ -812,7 +812,7 @@ def _CompareMaxPoolingBk(self, input_shape, output_shape, ksize, strides,
812812
813813 def _CompareMaxPoolingGradBk (self , input_shape , output_shape , ksize , strides ,
814814 padding ):
815- for dtype in [np .float32 , np .float16 ] + [np .float64 ]
815+ for dtype in [np .float32 , np .float16 ] + [np .float64 ] \
816816 if not test .is_built_with_rocm () else []:
817817 # Generate numbers in a narrow range, so that there are many duplicates
818818 # in the input.
0 commit comments