|
| 1 | +''' |
| 2 | +v1 |
| 3 | +runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "E:\codes\py39\RVC-beta\output" "E:\codes\py39\test-20230416b\weights\mi-test.pth" 0.66 cuda:0 True 3 0 1 0.33 |
| 4 | +v2 |
| 5 | +runtime\python.exe myinfer-v2-0528.py 0 "E:\codes\py39\RVC-beta\todo-songs" "E:\codes\py39\test-20230416b\logs\mi-test-v2\aadded_IVF677_Flat_nprobe_1_v2.index" harvest "E:\codes\py39\RVC-beta\output_v2" "E:\codes\py39\test-20230416b\weights\mi-test-v2.pth" 0.66 cuda:0 True 3 0 1 0.33 |
| 6 | +''' |
| 7 | +import os,sys,pdb,torch |
| 8 | +now_dir = os.getcwd() |
| 9 | +sys.path.append(now_dir) |
| 10 | +import argparse |
| 11 | +import glob |
| 12 | +import sys |
| 13 | +import torch |
| 14 | +import tqdm as tq |
| 15 | +from multiprocessing import cpu_count |
| 16 | +class Config: |
| 17 | + def __init__(self,device,is_half): |
| 18 | + self.device = device |
| 19 | + self.is_half = is_half |
| 20 | + self.n_cpu = 0 |
| 21 | + self.gpu_name = None |
| 22 | + self.gpu_mem = None |
| 23 | + self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() |
| 24 | + |
| 25 | + def device_config(self) -> tuple: |
| 26 | + if torch.cuda.is_available(): |
| 27 | + i_device = int(self.device.split(":")[-1]) |
| 28 | + self.gpu_name = torch.cuda.get_device_name(i_device) |
| 29 | + if ( |
| 30 | + ("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) |
| 31 | + or "P40" in self.gpu_name.upper() |
| 32 | + or "1060" in self.gpu_name |
| 33 | + or "1070" in self.gpu_name |
| 34 | + or "1080" in self.gpu_name |
| 35 | + ): |
| 36 | + print("16系/10系显卡和P40强制单精度") |
| 37 | + self.is_half = False |
| 38 | + for config_file in ["32k.json", "40k.json", "48k.json"]: |
| 39 | + with open(f"configs/{config_file}", "r") as f: |
| 40 | + strr = f.read().replace("true", "false") |
| 41 | + with open(f"configs/{config_file}", "w") as f: |
| 42 | + f.write(strr) |
| 43 | + with open("trainset_preprocess_pipeline_print.py", "r") as f: |
| 44 | + strr = f.read().replace("3.7", "3.0") |
| 45 | + with open("trainset_preprocess_pipeline_print.py", "w") as f: |
| 46 | + f.write(strr) |
| 47 | + else: |
| 48 | + self.gpu_name = None |
| 49 | + self.gpu_mem = int( |
| 50 | + torch.cuda.get_device_properties(i_device).total_memory |
| 51 | + / 1024 |
| 52 | + / 1024 |
| 53 | + / 1024 |
| 54 | + + 0.4 |
| 55 | + ) |
| 56 | + if self.gpu_mem <= 4: |
| 57 | + with open("trainset_preprocess_pipeline_print.py", "r") as f: |
| 58 | + strr = f.read().replace("3.7", "3.0") |
| 59 | + with open("trainset_preprocess_pipeline_print.py", "w") as f: |
| 60 | + f.write(strr) |
| 61 | + elif torch.backends.mps.is_available(): |
| 62 | + print("没有发现支持的N卡, 使用MPS进行推理") |
| 63 | + self.device = "mps" |
| 64 | + else: |
| 65 | + print("没有发现支持的N卡, 使用CPU进行推理") |
| 66 | + self.device = "cpu" |
| 67 | + self.is_half = True |
| 68 | + |
| 69 | + if self.n_cpu == 0: |
| 70 | + self.n_cpu = cpu_count() |
| 71 | + |
| 72 | + if self.is_half: |
| 73 | + # 6G显存配置 |
| 74 | + x_pad = 3 |
| 75 | + x_query = 10 |
| 76 | + x_center = 60 |
| 77 | + x_max = 65 |
| 78 | + else: |
| 79 | + # 5G显存配置 |
| 80 | + x_pad = 1 |
| 81 | + x_query = 6 |
| 82 | + x_center = 38 |
| 83 | + x_max = 41 |
| 84 | + |
| 85 | + if self.gpu_mem != None and self.gpu_mem <= 4: |
| 86 | + x_pad = 1 |
| 87 | + x_query = 5 |
| 88 | + x_center = 30 |
| 89 | + x_max = 32 |
| 90 | + |
| 91 | + return x_pad, x_query, x_center, x_max |
| 92 | + |
| 93 | +f0up_key=sys.argv[1] |
| 94 | +input_path=sys.argv[2] |
| 95 | +index_path=sys.argv[3] |
| 96 | +f0method=sys.argv[4]#harvest or pm |
| 97 | +opt_path=sys.argv[5] |
| 98 | +model_path=sys.argv[6] |
| 99 | +index_rate=float(sys.argv[7]) |
| 100 | +device=sys.argv[8] |
| 101 | +is_half=bool(sys.argv[9]) |
| 102 | +filter_radius=int(sys.argv[10]) |
| 103 | +resample_sr=int(sys.argv[11]) |
| 104 | +rms_mix_rate=float(sys.argv[12]) |
| 105 | +protect=float(sys.argv[13]) |
| 106 | +print(sys.argv) |
| 107 | +config=Config(device,is_half) |
| 108 | +now_dir=os.getcwd() |
| 109 | +sys.path.append(now_dir) |
| 110 | +from vc_infer_pipeline import VC |
| 111 | +from infer_pack.models import ( |
| 112 | + SynthesizerTrnMs256NSFsid, |
| 113 | + SynthesizerTrnMs256NSFsid_nono, |
| 114 | + SynthesizerTrnMs768NSFsid, |
| 115 | + SynthesizerTrnMs768NSFsid_nono, |
| 116 | +) |
| 117 | +from my_utils import load_audio |
| 118 | +from fairseq import checkpoint_utils |
| 119 | +from scipy.io import wavfile |
| 120 | + |
| 121 | +hubert_model=None |
| 122 | +def load_hubert(): |
| 123 | + global hubert_model |
| 124 | + models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(["hubert_base.pt"],suffix="",) |
| 125 | + hubert_model = models[0] |
| 126 | + hubert_model = hubert_model.to(device) |
| 127 | + if(is_half):hubert_model = hubert_model.half() |
| 128 | + else:hubert_model = hubert_model.float() |
| 129 | + hubert_model.eval() |
| 130 | + |
| 131 | +def vc_single(sid,input_audio,f0_up_key,f0_file,f0_method,file_index,index_rate): |
| 132 | + global tgt_sr,net_g,vc,hubert_model,version |
| 133 | + if input_audio is None:return "You need to upload an audio", None |
| 134 | + f0_up_key = int(f0_up_key) |
| 135 | + audio=load_audio(input_audio,16000) |
| 136 | + times = [0, 0, 0] |
| 137 | + if(hubert_model==None):load_hubert() |
| 138 | + if_f0 = cpt.get("f0", 1) |
| 139 | + # audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=f0_file) |
| 140 | + audio_opt=vc.pipeline(hubert_model,net_g,sid,audio,input_audio,times,f0_up_key,f0_method,file_index,index_rate,if_f0,filter_radius,tgt_sr,resample_sr,rms_mix_rate,version,protect,f0_file=f0_file) |
| 141 | + print(times) |
| 142 | + return audio_opt |
| 143 | + |
| 144 | + |
| 145 | +def get_vc(model_path): |
| 146 | + global n_spk,tgt_sr,net_g,vc,cpt,device,is_half,version |
| 147 | + print("loading pth %s"%model_path) |
| 148 | + cpt = torch.load(model_path, map_location="cpu") |
| 149 | + tgt_sr = cpt["config"][-1] |
| 150 | + cpt["config"][-3]=cpt["weight"]["emb_g.weight"].shape[0]#n_spk |
| 151 | + if_f0=cpt.get("f0",1) |
| 152 | + version = cpt.get("version", "v1") |
| 153 | + if version == "v1": |
| 154 | + if if_f0 == 1: |
| 155 | + net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=is_half) |
| 156 | + else: |
| 157 | + net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) |
| 158 | + elif version == "v2": |
| 159 | + if if_f0 == 1:# |
| 160 | + net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=is_half) |
| 161 | + else: |
| 162 | + net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) |
| 163 | + del net_g.enc_q |
| 164 | + print(net_g.load_state_dict(cpt["weight"], strict=False)) # 不加这一行清不干净,真奇葩 |
| 165 | + net_g.eval().to(device) |
| 166 | + if (is_half):net_g = net_g.half() |
| 167 | + else:net_g = net_g.float() |
| 168 | + vc = VC(tgt_sr, config) |
| 169 | + n_spk=cpt["config"][-3] |
| 170 | + # return {"visible": True,"maximum": n_spk, "__type__": "update"} |
| 171 | + |
| 172 | + |
| 173 | +get_vc(model_path) |
| 174 | +audios = os.listdir(input_path) |
| 175 | +for file in tq.tqdm(audios): |
| 176 | + if file.endswith('.wav'): |
| 177 | + file_path = input_path + '/' + file |
| 178 | + wav_opt=vc_single(0,file_path,f0up_key,None,f0method,index_path,index_rate) |
| 179 | + out_path = opt_path + '/' + file |
| 180 | + wavfile.write(out_path, tgt_sr, wav_opt) |
| 181 | + |
0 commit comments