Skip to content

Commit fd3adb7

Browse files
esantorellafacebook-github-bot
authored andcommitted
Remove unused arguments from SobolSensitivityGPMean (facebook#3892)
Summary: Pull Request resolved: facebook#3892 Two arguments are no longer used, one as a result of D75712208 and one has long been unused Reviewed By: saitcakmak Differential Revision: D76151380 fbshipit-source-id: f9572bb76282b90001c1c50bbe173900bc8e4b11
1 parent 0593421 commit fd3adb7

File tree

1 file changed

+0
-10
lines changed

1 file changed

+0
-10
lines changed

ax/utils/sensitivity/sobol_measures.py

Lines changed: 0 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -450,11 +450,9 @@ def __init__(
450450
second_order: bool = False,
451451
input_qmc: bool = False,
452452
num_bootstrap_samples: int = 1,
453-
first_order_idcs: torch.Tensor | None = None,
454453
link_function: Callable[
455454
[torch.Tensor, torch.Tensor], torch.Tensor
456455
] = GaussianLinkMean,
457-
mini_batch_size: int = 128,
458456
discrete_features: list[int] | None = None,
459457
) -> None:
460458
r"""Computes three types of Sobol indices:
@@ -470,13 +468,9 @@ def __init__(
470468
input_qmc: If True, a qmc Sobol grid is use instead of uniformly random.
471469
num_bootstrap_samples: If bootstrap is true, the number of bootstraps has
472470
to be specified.
473-
first_order_idcs: Tensor of previously computed first order indices, where
474-
first_order_idcs.shape = torch.Size([dim]).
475471
link_function: The link function to be used when computing the indices.
476472
Indices can be computed for the mean or on samples of the posterior,
477473
predictive, but defaults to computing on the mean (GaussianLinkMean).
478-
mini_batch_size: The size of the mini-batches used while evaluating the
479-
model posterior. Increasing this will increase the memory usage.
480474
discrete_features: If specified, the inputs associated with the indices in
481475
this list are generated using an integer-valued uniform distribution,
482476
rather than the default (pseudo-)random continuous uniform distribution.
@@ -903,9 +897,6 @@ def ax_parameter_sens(
903897
**sobol_kwargs,
904898
)
905899
feature_names = digest.feature_names
906-
indices_unsigned = array_with_string_indices_to_dict(
907-
rows=metrics, cols=feature_names, A=ind.cpu().numpy()
908-
)
909900
if signed:
910901
ind_deriv = compute_derivatives_from_model_list(
911902
model_list=model_list,
@@ -932,7 +923,6 @@ def ax_parameter_sens(
932923
bounds=bounds,
933924
order="second",
934925
discrete_features=digest.categorical_features + digest.ordinal_features,
935-
first_order_idcs=indices_unsigned,
936926
**sobol_kwargs,
937927
)
938928
second_order_feature_names = [

0 commit comments

Comments
 (0)