|
1 | | -# g2opy |
2 | | -This is a python binding of [g2o](https://github.com/RainerKuemmerle/g2o). |
| 1 | +# g2opy - Python Bindings for g2o |
3 | 2 |
|
4 | | -The code here is based on https://github.com/uoip/g2opy.git by qihang@outlook.com |
| 3 | +This is a Python binding of [g2o](https://github.com/RainerKuemmerle/g2o), a C++ library for graph-based optimization. |
5 | 4 |
|
6 | | -Currently, this project doesn't support writing user-defined types in python, |
7 | | -but the predefined types are enough to implement the most common algorithms, |
8 | | -say **PnP, ICP, Bundle Adjustment and Pose Graph Optimization** in 2d or 3d |
9 | | -scenarios. g2o's visualization part is not wrapped, if you want to visualize |
10 | | -point clouds or graph, you can give |
11 | | -[pangolin](https://github.com/uoip/pangolin) a try, it's a python binding of |
12 | | -C++ library [Pangolin](http://github.com/stevenlovegrove/Pangolin). |
| 5 | +## Features |
13 | 6 |
|
14 | | -For convenience, some frequently used Eigen types (Quaternion, Rotation2d, |
15 | | -Isometry3d, Isometry2d, AngleAxis) are packed into this library. |
| 7 | +g2opy provides high-level Python bindings for most common g2o use cases: |
16 | 8 |
|
17 | | -## Requirements |
18 | | -* ([pybind11](https://github.com/pybind/pybind11) |
| 9 | +- **Optimization Algorithms**: Gauss-Newton, Levenberg-Marquardt, Dogleg |
| 10 | +- **Linear Solvers**: Dense, Eigen, PCG, CSparse, CHOLMOD |
| 11 | +- **SLAM Types**: |
| 12 | + - **2D SLAM**: SE2 poses, XY points, pose-to-pose/point constraints |
| 13 | + - **3D SLAM**: SE3 poses, XYZ points, pose-to-pose/point constraints |
| 14 | + - **SLAM Priors**: Pose priors, point priors, offset constraints |
| 15 | +- **Bundle Adjustment (SBA)**: Multiple camera models and projection edges |
| 16 | +- **SIM3 Optimization**: Similarity transforms with scale |
| 17 | +- **ICP**: Generalized Iterative Closest Point (GiCP) |
| 18 | +- **Sensor Calibration**: SCLAM2D and multi-sensor calibration |
| 19 | + |
| 20 | +## Usage |
| 21 | + |
| 22 | +### Basic Optimization Example |
| 23 | + |
| 24 | +```python |
| 25 | +import g2opy |
| 26 | + |
| 27 | +# Create optimizer |
| 28 | +optimizer = g2opy.SparseOptimizer() |
| 29 | +solver = g2opy.BlockSolverSE2(g2opy.LinearSolverCholmodSE2()) |
| 30 | +algorithm = g2opy.OptimizationAlgorithmLevenberg(solver) |
| 31 | +optimizer.set_algorithm(algorithm) |
| 32 | + |
| 33 | +# Add vertices and edges |
| 34 | +v1 = g2opy.VertexSE2() |
| 35 | +v1.set_id(0) |
| 36 | +v1.set_estimate(g2opy.SE2(0, 0, 0)) |
| 37 | +optimizer.add_vertex(v1) |
| 38 | + |
| 39 | +# ... add more vertices and edges ... |
| 40 | + |
| 41 | +# Optimize |
| 42 | +optimizer.initialize_optimization() |
| 43 | +optimizer.optimize(10) |
| 44 | +``` |
| 45 | + |
| 46 | +### Creating Types by Factory |
| 47 | + |
| 48 | +You can dynamically create vertices and edges using the Factory pattern: |
| 49 | + |
| 50 | +```python |
| 51 | +factory = g2opy.Factory() |
| 52 | + |
| 53 | +# List all available types |
| 54 | +all_types = factory.known_types() |
| 55 | +print("Available types:", all_types) |
| 56 | + |
| 57 | +# Create edge by type name |
| 58 | +edge = factory.construct("EDGE_SE2") # Creates EdgeSE2 |
| 59 | +``` |
| 60 | + |
| 61 | +You can also obtain information about a type: |
| 62 | + |
| 63 | +```python |
| 64 | +factory = g2opy.Factory() |
| 65 | +info = factory.type_info("EDGE_SE2") |
| 66 | +print(f"Dimension: {info.dimension}") |
| 67 | +print(f"Error dimension: {info.error_dimension}") |
| 68 | +``` |
| 69 | + |
| 70 | +### User-Defined Types |
| 71 | + |
| 72 | +For dynamic optimization variables, you can use `VectorXVertex` and `VariableVectorXEdge`: |
| 73 | + |
| 74 | +```python |
| 75 | +import g2opy |
| 76 | +import numpy as np |
| 77 | + |
| 78 | +# Create a dynamic vertex |
| 79 | +vertex = g2opy.VectorXVertex() |
| 80 | +vertex.set_id(0) |
| 81 | +vertex.set_dimension(3) # 3-dimensional |
| 82 | +vertex.set_estimate(np.array([1.0, 2.0, 3.0])) |
| 83 | + |
| 84 | +# Create a dynamic edge |
| 85 | +edge = g2opy.VariableVectorXEdge() |
| 86 | +edge.resize(1) # number of vertices |
| 87 | +edge.set_dimension(1) # dimension of the error function |
| 88 | +edge.set_vertex(0, vertex) |
| 89 | +edge.set_measurement(np.array([1.5, 2.5, 3.5])) |
| 90 | +edge.set_information(np.eye(3)) |
| 91 | + |
| 92 | +# Subclass for custom behavior |
| 93 | +class CustomEdge(g2opy.VariableVectorXEdge): |
| 94 | + def __init__(self) -> None: |
| 95 | + super().__init__() |
| 96 | + self.set_dimension(1) # dimension of the error function |
| 97 | + self.information() |
| 98 | + self.resize(1) # number of vertices |
| 99 | + self.set_measurement([0, 0]) # initial measurement |
| 100 | + |
| 101 | + def compute_error(self): |
| 102 | + # Custom error computation |
| 103 | + v = self.vertex(0).estimate() |
| 104 | + measurement = self.measurement() |
| 105 | + self.error = v - measurement |
| 106 | + |
| 107 | + def linearize_oplus(self): |
| 108 | + # Custom linearization |
| 109 | + self.set_jacobian(0, -np.eye(len(self.vertex(0).estimate()))) |
| 110 | +``` |
| 111 | + |
| 112 | +## Core Classes |
| 113 | + |
| 114 | +### Optimizer |
| 115 | + |
| 116 | +- `SparseOptimizer`: Main optimization framework |
| 117 | +- `OptimizationAlgorithm`: Base class for optimization algorithms |
| 118 | + - `OptimizationAlgorithmGaussNewton` |
| 119 | + - `OptimizationAlgorithmLevenberg` |
| 120 | + - `OptimizationAlgorithmDogleg` |
| 121 | + |
| 122 | +### Solvers |
| 123 | + |
| 124 | +- `BlockSolver`: Base template for block solvers |
| 125 | + - `BlockSolverSE2`, `BlockSolverSE3`, `BlockSolverSim3` |
| 126 | +- `LinearSolver`: Base class for linear solvers |
| 127 | + - `LinearSolverDense`, `LinearSolverEigen` |
| 128 | + - `LinearSolverPCG`, `LinearSolverCSparse`, `LinearSolverCholmod` |
| 129 | + |
| 130 | +### Graph Elements |
| 131 | + |
| 132 | +- `HyperGraph`: Graph structure |
| 133 | +- `OptimizableGraph`: Base graph with vertices and edges |
| 134 | +- `VertexContainer`: Base vertex class |
| 135 | +- `EdgeContainer`: Base edge class |
| 136 | + |
| 137 | +### Eigen Types |
| 138 | + |
| 139 | +- `Quaternion`: Double-precision quaternion |
| 140 | +- `Isometry2d`, `Isometry3d`: Rigid transformations |
| 141 | +- `Rotation2d`: 2D rotation |
| 142 | +- `AngleAxis`: Angle-axis representation |
| 143 | +- `SE2`, `SE3Quat`: Special Euclidean groups |
| 144 | + |
| 145 | +### Factory |
| 146 | + |
| 147 | +- `Factory`: Dynamic type creation and registration |
| 148 | + - `construct(tag)`: Create vertex/edge by registered name |
| 149 | + - `known_types()`: List all registered types |
| 150 | + - `type_info(tag)`: Get dimension and structure information |
| 151 | + |
| 152 | +### Parameters |
| 153 | + |
| 154 | +- `Parameter`: Global optimization parameters |
| 155 | +- `ParameterContainer`: Parameter storage |
| 156 | +- Support for calibration parameters (camera intrinsics, SE2/SE3 offsets) |
| 157 | + |
| 158 | +## Type Groups |
| 159 | + |
| 160 | +Types are organized by category: |
| 161 | + |
| 162 | +- **SLAM 2D**: `VertexSE2`, `VertexPointXY`, `EdgeSE2`, `EdgeSE2PointXY`, etc. |
| 163 | +- **SLAM 3D**: `VertexSE3`, `VertexPointXYZ`, `EdgeSE3`, `EdgeSE3PointXYZ`, etc. |
| 164 | +- **Bundle Adjustment**: `EdgeProjectXYZ2UV`, `EdgeStereoSE3ProjectXYZ`, etc. |
| 165 | +- **SIM3**: `VertexSim3Expmap`, `EdgeSim3`, `EdgeSim3ProjectXYZ` |
| 166 | +- **ICP**: `VertexStereoCamera`, `EdgeGiCP`, `EdgeStereoCamera` |
| 167 | +- **SCLAM2D**: `VertexOdomDifferentialParams`, `EdgeSE2SensorCalib` |
| 168 | + |
| 169 | +## Requirements & Building |
| 170 | + |
| 171 | +Requirements: |
| 172 | + |
| 173 | +- Python 3.11+ |
| 174 | +- Eigen3 |
| 175 | +- pybind11 (included via CMake FetchContent) |
| 176 | +- g2o (from this repository) |
| 177 | + |
| 178 | +## Building |
| 179 | + |
| 180 | +The Python bindings are built as part of the main g2o CMake build: |
| 181 | + |
| 182 | +```bash |
| 183 | +cd g2o/build |
| 184 | +cmake .. -DBUILD_PYTHON_BINDINGS=ON |
| 185 | +make -j4 |
| 186 | +``` |
| 187 | + |
| 188 | +The compiled module will be in `build/lib/g2opy.*.so`. |
| 189 | + |
| 190 | +## Performance Notes |
| 191 | + |
| 192 | +### Threading |
| 193 | + |
| 194 | +g2o operations that can take significant time release the Python GIL: |
| 195 | +- `optimizer.optimize()` - Main optimization loop |
| 196 | +- `optimizer.initialize_optimization()` - Graph initialization |
| 197 | +- `optimizer.compute_marginals()` - Covariance computation |
| 198 | +- `optimizer.compute_active_errors()` - Error evaluation |
| 199 | + |
| 200 | +This allows other Python threads to run while optimization is in progress. |
| 201 | + |
| 202 | +### Memory Management |
| 203 | + |
| 204 | +The binding uses modern C++ memory management: |
| 205 | +- Smart pointers for ownership clarity |
| 206 | +- Automatic cleanup of resources |
| 207 | +- Minimal copying of Eigen matrices |
| 208 | + |
| 209 | +### Type Registration |
| 210 | + |
| 211 | +All g2o types are automatically registered when the module loads. |
| 212 | +The `Factory` class provides access to this registry for dynamic creation. |
| 213 | + |
| 214 | +## References |
| 215 | + |
| 216 | +- [Examples](examples) |
| 217 | +- [g2o Repository](https://github.com/RainerKuemmerle/g2o) |
| 218 | +- [g2o Paper](http://ais.informatik.uni-freiburg.de/publications/papers/kuemmerle11icra.pdf) |
| 219 | +- [pybind11 Documentation](https://pybind11.readthedocs.io/) |
| 220 | + |
| 221 | +## Contributing |
| 222 | + |
| 223 | +Improvements and bug reports are welcome! Please report issues to the |
| 224 | +[g2o project](https://github.com/RainerKuemmerle/g2o). |
19 | 225 |
|
20 | 226 | ## License |
21 | | -* The binding code and python example code is licensed under BSD License. |
| 227 | + |
| 228 | +The binding code and Python examples are licensed under the BSD License. |
| 229 | +The g2o library itself is licensed under BSD and LGPL (see main repository). |
| 230 | + |
| 231 | +## Acknowledgments |
| 232 | + |
| 233 | +The binding code is originally based on [g2opy](https://github.com/uoip/g2opy.git) by qihang@outlook.com. |
0 commit comments