2424def  unique_prime_factors (n : int ) ->  set :
2525    """ 
2626    Find unique prime factors of an integer. 
27-     Tests include sorting because only the set really  matters, 
27+     Tests include sorting because only the set matters, 
2828    not the order in which it is produced. 
2929    >>> sorted(set(unique_prime_factors(14))) 
3030    [2, 7] 
@@ -58,7 +58,7 @@ def upf_len(num: int) -> int:
5858
5959def  equality (iterable : list ) ->  bool :
6060    """ 
61-     Check equality of ALL elements in an iterable 
61+     Check the  equality of ALL elements in an iterable 
6262    >>> equality([1, 2, 3, 4]) 
6363    False 
6464    >>> equality([2, 2, 2, 2]) 
@@ -69,23 +69,23 @@ def equality(iterable: list) -> bool:
6969    return  len (set (iterable )) in  (0 , 1 )
7070
7171
72- def  run (n : int ) ->  list :
72+ def  run (n : int ) ->  list [ int ] :
7373    """ 
7474    Runs core process to find problem solution. 
7575    >>> run(3) 
7676    [644, 645, 646] 
7777    """ 
7878
7979    # Incrementor variable for our group list comprehension. 
80-     # This serves as  the first number in each list of values 
80+     # This is  the first number in each list of values 
8181    # to test. 
8282    base  =  2 
8383
8484    while  True :
8585        # Increment each value of a generated range 
8686        group  =  [base  +  i  for  i  in  range (n )]
8787
88-         # Run elements through out  unique_prime_factors function 
88+         # Run elements through the  unique_prime_factors function 
8989        # Append our target number to the end. 
9090        checker  =  [upf_len (x ) for  x  in  group ]
9191        checker .append (n )
@@ -98,7 +98,7 @@ def run(n: int) -> list:
9898        base  +=  1 
9999
100100
101- def  solution (n : int  =  4 ) ->  int :
101+ def  solution (n : int  =  4 ) ->  int   |   None :
102102    """Return the first value of the first four consecutive integers to have four 
103103    distinct prime factors each. 
104104    >>> solution() 
0 commit comments