@@ -39,7 +39,7 @@ yolov8n系列来源:[360LayoutAnalysis](https://github.com/360AILAB-NLP/360Lay
3939
4040(推荐使用)🔥doclayout_yolo模型来源:[ DocLayout-YOLO] ( https://github.com/opendatalab/DocLayout-YOLO ) ,该模型是目前最为优秀的开源模型,挑选了3个基于不同训练集训练得到的模型。其中` doclayout_docstructbench ` 来自[ link] ( https://huggingface.co/juliozhao/DocLayout-YOLO-DocStructBench/tree/main ) ,` doclayout_d4la ` 来自[ link] ( https://huggingface.co/juliozhao/DocLayout-YOLO-D4LA-Docsynth300K_pretrained/blob/main/doclayout_yolo_d4la_imgsz1600_docsynth_pretrain.pt ) ,` doclayout_docsynth ` 来自[ link] ( https://huggingface.co/juliozhao/DocLayout-YOLO-DocLayNet-Docsynth300K_pretrained/tree/main ) 。
4141
42- DocLayout模型下载地址为 :[ link] ( https://github.com/RapidAI/RapidLayout/releases/tag/v0.0.0 )
42+ 上述模型下载地址为 :[ link] ( https://github.com/RapidAI/RapidLayout/releases/tag/v0.0.0 )
4343
4444### 安装
4545
@@ -60,7 +60,7 @@ from imread_from_url import imread_from_url # pip install imread_from_url
6060from rapid_layout import RapidLayout, VisLayout
6161
6262# model_type类型参见上表。指定不同model_type时,会自动下载相应模型到安装目录下的。
63- layout_engine = RapidLayout(model_type = " doclayout_yolo " , conf_thres = 0.2 )
63+ layout_engine = RapidLayout(model_type = " doclayout_docstructbench " , conf_thres = 0.2 )
6464
6565img_url = " https://raw.githubusercontent.com/opendatalab/DocLayout-YOLO/refs/heads/main/assets/example/financial.jpg"
6666img = imread_from_url(img_url)
@@ -82,20 +82,20 @@ if ploted_img is not None:
8282``` bash
8383$ rapid_layout -h
8484usage: rapid_layout [-h] -img IMG_PATH
85- [-m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }]
86- [--conf_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }]
87- [--iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }]
85+ [-m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }]
86+ [--conf_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }]
87+ [--iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }]
8888 [--use_cuda] [--use_dml] [-v]
8989
9090options:
9191 -h, --help show this help message and exit
9292 -img IMG_PATH, --img_path IMG_PATH
9393 Path to image for layout.
94- -m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }, --model_type {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }
94+ -m {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }, --model_type {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }
9595 Support model type
96- --conf_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }
96+ --conf_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }
9797 Box threshold, the range is [0, 1]
98- --iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_yolo }
98+ --iou_thres {pp_layout_cdla,pp_layout_publaynet,pp_layout_table,yolov8n_layout_paper,yolov8n_layout_report,yolov8n_layout_publaynet,yolov8n_layout_general6,doclayout_docstructbench,doclayout_d4la,doclayout_docsynth }
9999 IoU threshold, the range is [0, 1]
100100 --use_cuda Whether to use cuda.
101101 --use_dml Whether to use DirectML, which only works in Windows10+.
0 commit comments