Skip to content

Commit 23a2f2d

Browse files
Merge pull request #6870 from Mukulyadav2004/replace_partial_matches
Remove partial argument usage #6855
2 parents 55eb0f1 + 440cca6 commit 23a2f2d

File tree

3 files changed

+15
-15
lines changed

3 files changed

+15
-15
lines changed

vignettes/datatable-reshape.Rmd

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,7 @@ dcast(DT.m1, family_id + age_mother ~ child, value.var = "dob")
130130
You can also pass a function to aggregate by in `dcast` with the argument `fun.aggregate`. This is particularly essential when the formula provided does not identify single observation for each cell.
131131

132132
```{r}
133-
dcast(DT.m1, family_id ~ ., fun.agg = function(x) sum(!is.na(x)), value.var = "dob")
133+
dcast(DT.m1, family_id ~ ., fun.aggregate = function(x) sum(!is.na(x)), value.var = "dob")
134134
```
135135

136136
Check `?dcast` for other useful arguments and additional examples.
@@ -156,7 +156,7 @@ DT
156156
And you'd like to combine (`melt`) all the `dob` columns together, and `gender` columns together. Using the current functionality, we can do something like this:
157157

158158
```{r}
159-
DT.m1 = melt(DT, id = c("family_id", "age_mother"))
159+
DT.m1 = melt(DT, id.vars = c("family_id", "age_mother"))
160160
DT.m1[, c("variable", "child") := tstrsplit(variable, "_", fixed = TRUE)]
161161
DT.c1 = dcast(DT.m1, family_id + age_mother + child ~ variable, value.var = "value")
162162
DT.c1
@@ -191,7 +191,7 @@ The idea is quite simple. We pass a list of columns to `measure.vars`, where eac
191191
```{r}
192192
colA = paste0("dob_child", 1:3)
193193
colB = paste0("gender_child", 1:3)
194-
DT.m2 = melt(DT, measure = list(colA, colB), value.name = c("dob", "gender"))
194+
DT.m2 = melt(DT, measure.vars = list(colA, colB), value.name = c("dob", "gender"))
195195
DT.m2
196196
197197
str(DT.m2) ## col type is preserved
@@ -206,7 +206,7 @@ str(DT.m2) ## col type is preserved
206206
Usually in these problems, the columns we'd like to melt can be distinguished by a common pattern. We can use the function `patterns()`, implemented for convenience, to provide regular expressions for the columns to be combined together. The above operation can be rewritten as:
207207

208208
```{r}
209-
DT.m2 = melt(DT, measure = patterns("^dob", "^gender"), value.name = c("dob", "gender"))
209+
DT.m2 = melt(DT, measure.vars = patterns("^dob", "^gender"), value.name = c("dob", "gender"))
210210
DT.m2
211211
```
212212

@@ -256,7 +256,7 @@ can see a more complex usage of `measure`, involving a function which
256256
is used to convert the `child` string values to integers:
257257

258258
```{r}
259-
DT.m3 = melt(DT, measure = measure(value.name, child=as.integer, sep="_child"))
259+
DT.m3 = melt(DT, measure.vars = measure(value.name, child=as.integer, sep="_child"))
260260
DT.m3
261261
```
262262

vignettes/fr/datatable-reshape.Rmd

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -129,7 +129,7 @@ dcast(DT.m1, family_id + age_mother ~ child, value.var = "dob")
129129
Vous pouvez également passer une fonction d'agrégation dans `dcast` avec l'argument `fun.aggregate`. Ceci est particulièrement essentiel lorsque la formule fournie ne permet pas d'identifier une seule observation pour chaque cellule.
130130

131131
```{r}
132-
dcast(DT.m1, family_id ~ ., fun.agg = function(x) sum(!is.na(x)), value.var = "dob")
132+
dcast(DT.m1, family_id ~ ., fun.aggregate = function(x) sum(!is.na(x)), value.var = "dob")
133133
```
134134

135135
Voir `?dcast` pour d'autres arguments utiles et des exemples supplémentaires.
@@ -156,7 +156,7 @@ DT
156156
Et vous aimeriez combiner (avec `melt`) toutes les colonnes `dob` ensemble, ainsi que toutes les colonnes `gender` ensemble. Avec la fonctionnalité actuelle, nous pouvons faire quelque chose comme ceci :
157157

158158
```{r}
159-
DT.m1 = melt(DT, id = c("family_id", "age_mother"))
159+
DT.m1 = melt(DT, id.vars = c("family_id", "age_mother"))
160160
DT.m1[, c("variable", "child") := tstrsplit(variable, "_", fixed = TRUE)]
161161
DT.c1 = dcast(DT.m1, family_id + age_mother + child ~ variable, value.var = "value")
162162
DT.c1
@@ -191,7 +191,7 @@ L'idée est assez simple. Nous passons une liste de colonnes à `measure.vars`,
191191
```{r}
192192
colA = paste0("dob_child", 1:3)
193193
colB = paste0("gender_child", 1:3)
194-
DT.m2 = melt(DT, measure = list(colA, colB), value.name = c("dob", "gender"))
194+
DT.m2 = melt(DT, measure.vars = list(colA, colB), value.name = c("dob", "gender"))
195195
DT.m2
196196
197197
str(DT.m2) ## le type de col est préservé
@@ -206,7 +206,7 @@ str(DT.m2) ## le type de col est préservé
206206
En général, dans ce type de problème, les colonnes que l'on souhaite transformer avec `melt` peuvent être distinguées par un motif commun. Nous pouvons utiliser la fonction `patterns()`, implémentée pour faciliter cette tâche, pour fournir des expressions régulières correspondant aux colonnes à combiner ensemble. L'opération ci-dessus peut alors être réécrite comme suit :
207207

208208
```{r}
209-
DT.m2 = melt(DT, measure = patterns("^dob", "^gender"), value.name = c("dob", "gender"))
209+
DT.m2 = melt(DT, measure.vars = patterns("^dob", "^gender"), value.name = c("dob", "gender"))
210210
DT.m2
211211
```
212212

@@ -241,7 +241,7 @@ melt(two.iris, measure.vars = measure(part, value.name, sep="."))
241241
En revenant à l'exemple des données sur les familles et les enfants, nous pouvons voir une utilisation plus complexe de `measure`, impliquant une fonction utilisée pour convertir les valeurs de la chaîne `child` en entiers :
242242

243243
```{r}
244-
DT.m3 = melt(DT, measure = measure(value.name, child=as.integer, sep="_child"))
244+
DT.m3 = melt(DT, measure.vars = measure(value.name, child=as.integer, sep="_child"))
245245
DT.m3
246246
```
247247

vignettes/ru/datatable-reshape.Rmd

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ dcast(DT.m1, family_id + age_mother ~ child, value.var = "dob")
159159
одного наблюдения для каждой описываемой ею ячейки.
160160

161161
```{r}
162-
dcast(DT.m1, family_id ~ ., fun.agg = function(x) sum(!is.na(x)), value.var = "dob")
162+
dcast(DT.m1, family_id ~ ., fun.aggregate = function(x) sum(!is.na(x)), value.var = "dob")
163163
```
164164

165165
Ознакомьтесь с `?dcast`, чтобы узнать о других полезных аргументах и
@@ -191,7 +191,7 @@ DT
191191
примерно следующее:
192192

193193
```{r}
194-
DT.m1 = melt(DT, id = c("family_id", "age_mother"))
194+
DT.m1 = melt(DT, id.vars = c("family_id", "age_mother"))
195195
DT.m1[, c("variable", "child") := tstrsplit(variable, "_", fixed = TRUE)]
196196
DT.c1 = dcast(DT.m1, family_id + age_mother + child ~ variable, value.var = "value")
197197
DT.c1
@@ -241,7 +241,7 @@ str(DT.c1) ## столбец gender теперь класса IDate!
241241
```{r}
242242
colA = paste0("dob_child", 1:3)
243243
colB = paste0("gender_child", 1:3)
244-
DT.m2 = melt(DT, measure = list(colA, colB), value.name = c("dob", "gender"))
244+
DT.m2 = melt(DT, measure.vars = list(colA, colB), value.name = c("dob", "gender"))
245245
DT.m2
246246
247247
str(DT.m2) ## тип столбца сохранён
@@ -259,7 +259,7 @@ str(DT.m2) ## тип столбца сохранён
259259
`patterns()`. Приведенную выше операцию можно переписать так:
260260

261261
```{r}
262-
DT.m2 = melt(DT, measure = patterns("^dob", "^gender"), value.name = c("dob", "gender"))
262+
DT.m2 = melt(DT, measure.vars = patterns("^dob", "^gender"), value.name = c("dob", "gender"))
263263
DT.m2
264264
```
265265

@@ -312,7 +312,7 @@ melt(two.iris, measure.vars = measure(part, value.name, sep="."))
312312
для преобразования строковых значений `child` в целые числа:
313313

314314
```{r}
315-
DT.m3 = melt(DT, measure = measure(value.name, child=as.integer, sep="_child"))
315+
DT.m3 = melt(DT, measure.vars = measure(value.name, child=as.integer, sep="_child"))
316316
DT.m3
317317
```
318318

0 commit comments

Comments
 (0)