Skip to content

Commit 898857b

Browse files
committed
compile with -O3 and use performance mode rather than balanced
1 parent 0f06a88 commit 898857b

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

NEWS.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ frollsum(c(1,2,3,Inf,5,6), 2)
3838

3939
For a comprehensive description about all available features see `?froll` manual.
4040

41-
Adaptive `frollmax` has observed to be almost 100 times faster than second fastest solution (data.table self-join using `max` and grouping `by=.EACHI`). Note that important factor in performance is width of the rolling window. Code for the benchmark below has been taken from [this SO answer](https://stackoverflow.com/a/73408459/2490497).
41+
Adaptive `frollmax` has observed to be around 80 times faster than second fastest solution (data.table self-join using `max` and grouping `by=.EACHI`). Note that important factor in performance is width of the rolling window. Code for the benchmark below has been taken from [this SO answer](https://stackoverflow.com/a/73408459/2490497).
4242
```r
4343
set.seed(108)
4444
setDTthreads(16)
@@ -58,11 +58,11 @@ microbenchmark::microbenchmark(
5858
times=10, check="identical"
5959
)
6060
#Unit: milliseconds
61-
# expr min lq mean median uq max neval
62-
# baser(x) 3795.27209 4051.33159 4170.51859 4187.30114 4315.97151 4413.3272 10
63-
# sj(x) 2833.27588 2842.76144 2902.32128 2873.51706 2963.72514 2990.0901 10
64-
# frmax(x) 29.81908 33.55922 37.24334 36.04337 42.35755 45.8010 10
65-
# frapply(x) 395.60000 417.02053 474.53025 449.81073 545.89983 563.4593 10
61+
# expr min lq mean median uq max neval
62+
# baser(x) 3094.88357 3097.84966 3186.74832 3163.58050 3251.66753 3370.33785 10
63+
# sj(x) 2221.55456 2255.12083 2306.61382 2303.47883 2346.70293 2412.62975 10
64+
# frmax(x) 17.45124 24.16809 28.10062 28.58153 32.79802 34.83941 10
65+
# frapply(x) 272.07830 316.47060 366.94771 396.23566 416.06699 421.38701 10
6666
```
6767

6868
As of now, adaptive rolling max has no _on-line_ implemention (`algo="fast"`), it uses a naive approach (`algo="exact"`). Therefore further speed up is still possible if `algo="fast"` gets implemented.

0 commit comments

Comments
 (0)