|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "outputs": [], |
| 10 | + "source": [ |
| 11 | + "from rmgpy.data.rmg import RMGDatabase\n", |
| 12 | + "from rmgpy.chemkin import saveChemkinFile, saveSpeciesDictionary\n", |
| 13 | + "from rmgpy.rmg.model import Species, getFamilyLibraryObject, CoreEdgeReactionModel\n", |
| 14 | + "from rmgpy import settings\n", |
| 15 | + "from convertKineticsLibraryToTrainingReactions import addAtomLabelsForReaction" |
| 16 | + ] |
| 17 | + }, |
| 18 | + { |
| 19 | + "cell_type": "code", |
| 20 | + "execution_count": null, |
| 21 | + "metadata": { |
| 22 | + "collapsed": false |
| 23 | + }, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "database = RMGDatabase()\n", |
| 27 | + "libraries = ['C3']\n", |
| 28 | + "database.load(settings['database.directory'], kineticsFamilies='all', reactionLibraries = libraries, kineticsDepositories='all')" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "## step1: find fam_rxn for each lib_rxn" |
| 36 | + ] |
| 37 | + }, |
| 38 | + { |
| 39 | + "cell_type": "code", |
| 40 | + "execution_count": null, |
| 41 | + "metadata": { |
| 42 | + "collapsed": false |
| 43 | + }, |
| 44 | + "outputs": [], |
| 45 | + "source": [ |
| 46 | + "reactionDict = {}\n", |
| 47 | + "for libraryName in libraries:\n", |
| 48 | + " kineticLibrary = database.kinetics.libraries[libraryName]\n", |
| 49 | + " for index, entry in kineticLibrary.entries.iteritems():\n", |
| 50 | + " lib_rxn = entry.item\n", |
| 51 | + " lib_rxn.kinetics = entry.data \n", |
| 52 | + " lib_rxn.index = entry.index\n", |
| 53 | + " # Let's make RMG generate this reaction from the families!\n", |
| 54 | + " fam_rxn_list = []\n", |
| 55 | + " rxt_mol_mutation_num = 1\n", |
| 56 | + " pdt_mol_mutation_num = 1\n", |
| 57 | + " for reactant in lib_rxn.reactants:\n", |
| 58 | + " rxt_mol_mutation_num *= len(reactant.molecule)\n", |
| 59 | + "\n", |
| 60 | + " for product in lib_rxn.products:\n", |
| 61 | + " pdt_mol_mutation_num *= len(product.molecule)\n", |
| 62 | + "\n", |
| 63 | + " for mutation_i in range(rxt_mol_mutation_num):\n", |
| 64 | + " rxts_mol = [spc.molecule[mutation_i%(len(spc.molecule))] for spc in lib_rxn.reactants]\n", |
| 65 | + " pdts_mol = [spc.molecule[0] for spc in lib_rxn.products]\n", |
| 66 | + " fam_rxn_list.extend(database.kinetics.generateReactionsFromFamilies(\n", |
| 67 | + " reactants=rxts_mol, products=pdts_mol))\n", |
| 68 | + "\n", |
| 69 | + " if len(fam_rxn_list) == 1:\n", |
| 70 | + " fam_rxn = fam_rxn_list[0] \n", |
| 71 | + " lib_reactants = [r for r in lib_rxn.reactants] \n", |
| 72 | + " fam_reactants = [r for r in fam_rxn.reactants]\n", |
| 73 | + " for lib_reactant in lib_reactants:\n", |
| 74 | + " for fam_reactant in fam_reactants:\n", |
| 75 | + " if lib_reactant.isIsomorphic(fam_reactant):\n", |
| 76 | + " fam_reactants.remove(fam_reactant)\n", |
| 77 | + " break\n", |
| 78 | + "\n", |
| 79 | + " lib_products = [r for r in lib_rxn.products] \n", |
| 80 | + " fam_products = [r for r in fam_rxn.products]\n", |
| 81 | + " for lib_product in lib_products:\n", |
| 82 | + " for fam_product in fam_products:\n", |
| 83 | + " if lib_product.isIsomorphic(fam_product):\n", |
| 84 | + " fam_products.remove(fam_product)\n", |
| 85 | + " break\n", |
| 86 | + "\n", |
| 87 | + " forward = not (len(fam_reactants) != 0 or len(fam_products) != 0)\n", |
| 88 | + " # find the labeled atoms using family and reactants & products from fam_rxn \n", |
| 89 | + " addAtomLabelsForReaction(fam_rxn, database)\n", |
| 90 | + " fam_rxn.index = lib_rxn.index\n", |
| 91 | + " reactionDict[fam_rxn.family] = [fam_rxn]" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "metadata": { |
| 98 | + "collapsed": false |
| 99 | + }, |
| 100 | + "outputs": [], |
| 101 | + "source": [ |
| 102 | + "from IPython.display import display\n", |
| 103 | + "for fam_rxn in reactionDict['Intra_R_Add_Endocyclic']:\n", |
| 104 | + " print fam_rxn.index\n", |
| 105 | + " display(fam_rxn)\n", |
| 106 | + " for spec in fam_rxn.reactants + fam_rxn.products:\n", |
| 107 | + " print spec.molecule[0].toSMILES()" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": null, |
| 113 | + "metadata": { |
| 114 | + "collapsed": false |
| 115 | + }, |
| 116 | + "outputs": [], |
| 117 | + "source": [ |
| 118 | + "for index, entry in kineticLibrary.entries.iteritems():\n", |
| 119 | + " if entry.index == fam_rxn.index:\n", |
| 120 | + " lib_rxn = entry.item\n", |
| 121 | + " lib_rxn.kinetics = entry.data \n", |
| 122 | + " lib_rxn.index = entry.index\n", |
| 123 | + " break\n", |
| 124 | + "lib_rxn" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": null, |
| 130 | + "metadata": { |
| 131 | + "collapsed": false |
| 132 | + }, |
| 133 | + "outputs": [], |
| 134 | + "source": [ |
| 135 | + "id(fam_rxn.reactants[0].molecule[0]), id(lib_rxn.reactants[0].molecule[0])" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "## step2: get fam_rxn's kinetics" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "Before training RMG estimates fam_rxn's kinetics as $ A = 10^9, n = 0.19, E_a = 83.68 kJ/mol $ at [here](http://rmg.mit.edu/database/kinetics/families/Intra_R_Add_Endocyclic/rate_rules/reactant1=multiplicity%25202%250A1%2520%2520C%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%2520%257B3%252CS%257D%2520%257B8%252CS%257D%2520%257B9%252CS%257D%250A2%2520%2520C%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%2520%257B4%252CS%257D%2520%257B5%252CS%257D%2520%257B6%252CS%257D%250A3%2520%2520C%2520u1%2520p0%2520c0%2520%257B1%252CS%257D%2520%257B7%252CD%257D%250A4%2520%2520C%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%2520%257B10%252CT%257D%250A5%2520%2520H%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%250A6%2520%2520H%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%250A7%2520%2520C%2520u0%2520p0%2520c0%2520%257B3%252CD%257D%2520%257B11%252CS%257D%2520%257B12%252CS%257D%250A8%2520%2520H%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%250A9%2520%2520H%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%250A10%2520C%2520u0%2520p0%2520c0%2520%257B4%252CT%257D%2520%257B13%252CS%257D%250A11%2520H%2520u0%2520p0%2520c0%2520%257B7%252CS%257D%250A12%2520H%2520u0%2520p0%2520c0%2520%257B7%252CS%257D%250A13%2520H%2520u0%2520p0%2520c0%2520%257B10%252CS%257D%250A__product1=multiplicity%25202%250A1%2520%2520C%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%2520%257B3%252CS%257D%2520%257B7%252CS%257D%2520%257B8%252CS%257D%250A2%2520%2520C%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%2520%257B4%252CS%257D%2520%257B9%252CS%257D%2520%257B10%252CS%257D%250A3%2520%2520C%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%2520%257B5%252CS%257D%2520%257B6%252CD%257D%250A4%2520%2520C%2520u1%2520p0%2520c0%2520%257B2%252CS%257D%2520%257B5%252CD%257D%250A5%2520%2520C%2520u0%2520p0%2520c0%2520%257B3%252CS%257D%2520%257B4%252CD%257D%2520%257B11%252CS%257D%250A6%2520%2520C%2520u0%2520p0%2520c0%2520%257B3%252CD%257D%2520%257B12%252CS%257D%2520%257B13%252CS%257D%250A7%2520%2520H%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%250A8%2520%2520H%2520u0%2520p0%2520c0%2520%257B1%252CS%257D%250A9%2520%2520H%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%250A10%2520H%2520u0%2520p0%2520c0%2520%257B2%252CS%257D%250A11%2520H%2520u0%2520p0%2520c0%2520%257B5%252CS%257D%250A12%2520H%2520u0%2520p0%2520c0%2520%257B6%252CS%257D%250A13%2520H%2520u0%2520p0%2520c0%2520%257B6%252CS%257D%250A)." |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "markdown", |
| 154 | + "metadata": {}, |
| 155 | + "source": [ |
| 156 | + "## step3: after training get fam_rxn's kinetics" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": null, |
| 162 | + "metadata": { |
| 163 | + "collapsed": true |
| 164 | + }, |
| 165 | + "outputs": [], |
| 166 | + "source": [ |
| 167 | + "cem = CoreEdgeReactionModel()\n", |
| 168 | + "cem.kineticsEstimator = 'rate rules'\n", |
| 169 | + "cem.verboseComments = True" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": null, |
| 175 | + "metadata": { |
| 176 | + "collapsed": false |
| 177 | + }, |
| 178 | + "outputs": [], |
| 179 | + "source": [ |
| 180 | + "from rmgpy.kinetics.kineticsdata import KineticsData\n", |
| 181 | + "from rmgpy.data.kinetics.family import TemplateReaction\n", |
| 182 | + "from rmgpy.data.kinetics.depository import DepositoryReaction\n", |
| 183 | + "\n", |
| 184 | + "for idx, spec in enumerate(fam_rxn.reactants):\n", |
| 185 | + " spec = Species(label=spec.label, molecule=spec.molecule)\n", |
| 186 | + " spec.generateThermoData(database)\n", |
| 187 | + " fam_rxn.reactants[idx] = spec\n", |
| 188 | + "for idx, spec in enumerate(fam_rxn.products):\n", |
| 189 | + " spec = Species(label=spec.label, molecule=spec.molecule)\n", |
| 190 | + " spec.generateThermoData(database)\n", |
| 191 | + " fam_rxn.products[idx] = spec\n", |
| 192 | + "\n", |
| 193 | + "family = getFamilyLibraryObject(fam_rxn.family)\n", |
| 194 | + "\n", |
| 195 | + "# If the reaction already has kinetics (e.g. from a library),\n", |
| 196 | + "# assume the kinetics are satisfactory\n", |
| 197 | + "if fam_rxn.kinetics is None:\n", |
| 198 | + " # Set the reaction kinetics\n", |
| 199 | + " kinetics, source, entry, isForward = cem.generateKinetics(fam_rxn)\n", |
| 200 | + " fam_rxn.kinetics = kinetics\n", |
| 201 | + " # Flip the reaction direction if the kinetics are defined in the reverse direction\n", |
| 202 | + " if not isForward:\n", |
| 203 | + " fam_rxn.reactants, fam_rxn.products = fam_rxn.products, fam_rxn.reactants\n", |
| 204 | + " fam_rxn.pairs = [(p,r) for r,p in fam_rxn.pairs]\n", |
| 205 | + " if family.ownReverse and hasattr(fam_rxn,'reverse'):\n", |
| 206 | + " if not isForward:\n", |
| 207 | + " fam_rxn.template = fam_rxn.reverse.template\n", |
| 208 | + " # We're done with the \"reverse\" attribute, so delete it to save a bit of memory\n", |
| 209 | + " delattr(fam_rxn,'reverse')\n", |
| 210 | + "\n", |
| 211 | + "# convert KineticsData to Arrhenius forms\n", |
| 212 | + "if isinstance(fam_rxn.kinetics, KineticsData):\n", |
| 213 | + " fam_rxn.kinetics = fam_rxn.kinetics.toArrhenius()\n", |
| 214 | + "# correct barrier heights of estimated kinetics\n", |
| 215 | + "if isinstance(fam_rxn,TemplateReaction) or isinstance(fam_rxn,DepositoryReaction): # i.e. not LibraryReaction\n", |
| 216 | + " fam_rxn.fixBarrierHeight() # also converts ArrheniusEP to Arrhenius.\n", |
| 217 | + "\n", |
| 218 | + "if cem.pressureDependence and fam_rxn.isUnimolecular():\n", |
| 219 | + " # If this is going to be run through pressure dependence code,\n", |
| 220 | + " # we need to make sure the barrier is positive.\n", |
| 221 | + " fam_rxn.fixBarrierHeight(forcePositive=True)" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": null, |
| 227 | + "metadata": { |
| 228 | + "collapsed": false |
| 229 | + }, |
| 230 | + "outputs": [], |
| 231 | + "source": [ |
| 232 | + "fam_rxn.kinetics" |
| 233 | + ] |
| 234 | + }, |
| 235 | + { |
| 236 | + "cell_type": "markdown", |
| 237 | + "metadata": {}, |
| 238 | + "source": [ |
| 239 | + "## step4: compare with lib_rxn's kinetics" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": null, |
| 245 | + "metadata": { |
| 246 | + "collapsed": false |
| 247 | + }, |
| 248 | + "outputs": [], |
| 249 | + "source": [ |
| 250 | + "lib_rxn.kinetics" |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "markdown", |
| 255 | + "metadata": {}, |
| 256 | + "source": [ |
| 257 | + "## Conclusion: it improves the kinetics by factor of 10,000 at 673 for this reaction" |
| 258 | + ] |
| 259 | + } |
| 260 | + ], |
| 261 | + "metadata": { |
| 262 | + "kernelspec": { |
| 263 | + "display_name": "Python 2", |
| 264 | + "language": "python", |
| 265 | + "name": "python2" |
| 266 | + }, |
| 267 | + "language_info": { |
| 268 | + "codemirror_mode": { |
| 269 | + "name": "ipython", |
| 270 | + "version": 2 |
| 271 | + }, |
| 272 | + "file_extension": ".py", |
| 273 | + "mimetype": "text/x-python", |
| 274 | + "name": "python", |
| 275 | + "nbconvert_exporter": "python", |
| 276 | + "pygments_lexer": "ipython2", |
| 277 | + "version": "2.7.11" |
| 278 | + } |
| 279 | + }, |
| 280 | + "nbformat": 4, |
| 281 | + "nbformat_minor": 0 |
| 282 | +} |
0 commit comments