Skip to content
View RecallIO's full-sized avatar

Block or report RecallIO

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Please don't include any personal information such as legal names or email addresses. Maximum 100 characters, markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
recallio/README.md

🧠 RecallIO

RecallIO.ai – Plug‑and‑play memory for next-gen AI apps, agents, and SaaS products. Persistent, intelligent memory across sessions—zero backend infrastructure required.


🚀 Key Features

  • Persistent & Scoped Memory Seamlessly save, retrieve, and update memories linked to specific users or sessions.

  • Fact Extraction Automatically distill key facts from memories, storing them efficiently for rapid retrieval.

  • Instant Summaries Generate and access insightful summaries within milliseconds.

  • Intelligent Prioritization Surface the most relevant information precisely when it's needed.

  • Memory Graph Intelligence Dynamically identify entities and relationships for advanced, intuitive access.

  • Plug-and-Play Integration Effortless REST and SDK integration—focus on your product, not infrastructure.

  • Secure & Compliance-Ready Designed with industry-leading data privacy and security best practices built-in.


💡 Why RecallIO?

Common Challenges RecallIO Advantage
Session context resets Persistent, searchable memory
Rebuilding memory infrastructure Out-of-the-box memory API
Excessive token usage Efficient, scoped memory retrieval

Unlock smarter AI experiences with RecallIO.


📦 Repository Structure

/
├── examples/         # Demo integrations (Node, Python)
└── README.md         # ← You are here

⚡ Quickstart Node.js

Installation

npm install recallio

Usage

import { RecallioClient } from 'recallio';

const client = new RecallioClient({ apiKey: 'YOUR_API_KEY' });

// Write a memory
await client.writeMemory({
  userId: 'user_123',
  projectId: 'project_abc',
  content: 'The user prefers dark mode',
  consentFlag: true,
});

// Recall memories
const result = await client.recallMemory({
  userId: 'user_123',
  projectId: 'project_abc',
  query: 'dark mode',
  scope: 'user',
  reRank: true,
});

console.log(result);

// Summarize memories
const summary = await client.recallSummary({
  userId: 'user_123',
  projectId: 'project_abc',
  scope: 'user',
});

console.log(summary.content);

Working with the knowledge graph

// Add data to the graph
await client.addGraphMemory({
  data: 'Alice knows Bob',
  user_id: 'user_123',
});

// Search the graph
const relationships = await client.searchGraphMemory({
  query: 'Alice',
  limit: 5,
});

// Export memories as JSON
const data = await client.exportMemory({
  type: 'fact',
  format: 'json',
  userId: 'user_123',
});

console.log(data);

Error handling

API calls throw a RecallioError when the service returns an error response. The error includes the HTTP status code and the payload returned by the API.

import { RecallioClient, RecallioError } from 'recallio';

try {
  await client.writeMemory({
    userId: 'user_123',
    projectId: 'project_abc',
    content: 'The user prefers dark mode',
    consentFlag: true,
  });
} catch (err) {
  if (err instanceof RecallioError) {
    console.error('API error', err.status, err.details);
  } else {
    console.error('Unexpected error', err);
  }
}

⚡ Quickstart Python

Installation

pip install recallio

Usage

from recallio import (
    RecallioClient,
    MemoryWriteRequest,
    MemoryRecallRequest,
    RecallSummaryRequest,
    GraphAddRequest,
    GraphSearchRequest,
    MemoryExportRequest,
)

client = RecallioClient(api_key="YOUR_RECALLIO_API_KEY")

req = MemoryWriteRequest(
    userId="user_123",
    projectId="project_abc",
    content="The user prefers dark mode and wants notifications disabled on weekends",
    consentFlag=True,
)

memory = client.write_memory(req)
print(memory.id)

# recall memories
recall_req = MemoryRecallRequest(
    projectId="project_abc",
    userId="user_123",
    query="dark mode",
    scope="user",
    reRank=True,
)
results = client.recall_memory(recall_req)
for m in results:
    print(m.content, m.similarityScore)

# summarized recall
summary_req = RecallSummaryRequest(
    projectId="project_abc",
    userId="user_123",
    scope="user",
)
summary = client.recall_summary(summary_req)
print(summary.content)

# add data to the knowledge graph
graph_req = GraphAddRequest(
    data="John works at OpenAI in San Francisco",
    user_id="user_123",
    project_id="project_abc",
)
client.add_graph_memory(graph_req)

# search the graph
search_req = GraphSearchRequest(
    query="Where does John work?",
    user_id="user_123",
)
graph_results = client.search_graph_memory(search_req)
for r in graph_results:
    print(r.source, r.relationship, r.destination)

# export memories as JSON
export_req = MemoryExportRequest(
    type="fact",
    format="json",
    userId="user_123",
)
json_data = client.export_memory(export_req)
print(json_data)

📚 Examples

  • Node.js, Python – See /examples for integration across environments.
  • AI Agents & SaaS – Built for conversational tools, customer support, personal assistants.

🙌 Get Involved

Got feedback? Found issues?
Drop into discussions, raise issues, or shoot over a PR!

Let’s build better AI memories 🔗

Popular repositories Loading

  1. recallio recallio Public

    1

  2. telegram-bot telegram-bot Public

    TypeScript

  3. chatwithmemory-py chatwithmemory-py Public

    Python

  4. chatwithgraphmemory-ts chatwithgraphmemory-ts Public

    JavaScript

  5. langchain-recallio langchain-recallio Public

    Python

  6. n8n-nodes-recallio n8n-nodes-recallio Public

    TypeScript