RecallIO.ai – Plug‑and‑play memory for next-gen AI apps, agents, and SaaS products. Persistent, intelligent memory across sessions—zero backend infrastructure required.
-
Persistent & Scoped Memory Seamlessly save, retrieve, and update memories linked to specific users or sessions.
-
Fact Extraction Automatically distill key facts from memories, storing them efficiently for rapid retrieval.
-
Instant Summaries Generate and access insightful summaries within milliseconds.
-
Intelligent Prioritization Surface the most relevant information precisely when it's needed.
-
Memory Graph Intelligence Dynamically identify entities and relationships for advanced, intuitive access.
-
Plug-and-Play Integration Effortless REST and SDK integration—focus on your product, not infrastructure.
-
Secure & Compliance-Ready Designed with industry-leading data privacy and security best practices built-in.
Common Challenges | RecallIO Advantage |
---|---|
Session context resets | Persistent, searchable memory |
Rebuilding memory infrastructure | Out-of-the-box memory API |
Excessive token usage | Efficient, scoped memory retrieval |
Unlock smarter AI experiences with RecallIO.
/
├── examples/ # Demo integrations (Node, Python)
└── README.md # ← You are here
npm install recallio
import { RecallioClient } from 'recallio';
const client = new RecallioClient({ apiKey: 'YOUR_API_KEY' });
// Write a memory
await client.writeMemory({
userId: 'user_123',
projectId: 'project_abc',
content: 'The user prefers dark mode',
consentFlag: true,
});
// Recall memories
const result = await client.recallMemory({
userId: 'user_123',
projectId: 'project_abc',
query: 'dark mode',
scope: 'user',
reRank: true,
});
console.log(result);
// Summarize memories
const summary = await client.recallSummary({
userId: 'user_123',
projectId: 'project_abc',
scope: 'user',
});
console.log(summary.content);
// Add data to the graph
await client.addGraphMemory({
data: 'Alice knows Bob',
user_id: 'user_123',
});
// Search the graph
const relationships = await client.searchGraphMemory({
query: 'Alice',
limit: 5,
});
// Export memories as JSON
const data = await client.exportMemory({
type: 'fact',
format: 'json',
userId: 'user_123',
});
console.log(data);
API calls throw a RecallioError
when the service returns an error response. The
error includes the HTTP status code and the payload returned by the API.
import { RecallioClient, RecallioError } from 'recallio';
try {
await client.writeMemory({
userId: 'user_123',
projectId: 'project_abc',
content: 'The user prefers dark mode',
consentFlag: true,
});
} catch (err) {
if (err instanceof RecallioError) {
console.error('API error', err.status, err.details);
} else {
console.error('Unexpected error', err);
}
}
pip install recallio
from recallio import (
RecallioClient,
MemoryWriteRequest,
MemoryRecallRequest,
RecallSummaryRequest,
GraphAddRequest,
GraphSearchRequest,
MemoryExportRequest,
)
client = RecallioClient(api_key="YOUR_RECALLIO_API_KEY")
req = MemoryWriteRequest(
userId="user_123",
projectId="project_abc",
content="The user prefers dark mode and wants notifications disabled on weekends",
consentFlag=True,
)
memory = client.write_memory(req)
print(memory.id)
# recall memories
recall_req = MemoryRecallRequest(
projectId="project_abc",
userId="user_123",
query="dark mode",
scope="user",
reRank=True,
)
results = client.recall_memory(recall_req)
for m in results:
print(m.content, m.similarityScore)
# summarized recall
summary_req = RecallSummaryRequest(
projectId="project_abc",
userId="user_123",
scope="user",
)
summary = client.recall_summary(summary_req)
print(summary.content)
# add data to the knowledge graph
graph_req = GraphAddRequest(
data="John works at OpenAI in San Francisco",
user_id="user_123",
project_id="project_abc",
)
client.add_graph_memory(graph_req)
# search the graph
search_req = GraphSearchRequest(
query="Where does John work?",
user_id="user_123",
)
graph_results = client.search_graph_memory(search_req)
for r in graph_results:
print(r.source, r.relationship, r.destination)
# export memories as JSON
export_req = MemoryExportRequest(
type="fact",
format="json",
userId="user_123",
)
json_data = client.export_memory(export_req)
print(json_data)
- Node.js, Python – See
/examples
for integration across environments. - AI Agents & SaaS – Built for conversational tools, customer support, personal assistants.
Got feedback? Found issues?
Drop into discussions, raise issues, or shoot over a PR!
Let’s build better AI memories 🔗