143143 @defgroup ptrfs ptrfs: iterative refinement
144144 @}
145145
146- @defgroup hesv_driver_grp LDL: Hermitian/symmetric indefinite matrix, driver
146+ @defgroup hesv_driver_grp LDL: Hermitian/symmetric indefinite/skew-symmetric matrix, driver
147147 @{
148148 @defgroup hesv_driver --- full, rook pivoting ---
149- @defgroup hesv {he,sy}sv: rook (v1)
149+ @defgroup hesv {he,sy,ky }sv: rook (v1)
150150 @defgroup hesv_rook {he,sy}sv_rook: rook (v2)
151151 @defgroup hesv_rk {he,sy}sv_rk: rook (v3)
152152 @defgroup hesvx {he,sy}svx: rook (v1, expert)
165165 @{
166166 @defgroup hesv_comp_v1 --- full, rook v1 ---
167167 @defgroup hecon {he,sy}con: condition number estimate
168- @defgroup hetrf {he,sy}trf: triangular factor
169- @defgroup lahef la{he,sy}f: step in hetrf
170- @defgroup hetf2 {he,sy}tf2: triangular factor, level 2
171- @defgroup hetrs {he,sy}trs: triangular solve using factor
172- @defgroup hetri {he,sy}tri: triangular inverse
168+ @defgroup hetrf {he,sy,ky }trf: triangular factor
169+ @defgroup lahef la{he,sy,ky }f: step in hetrf
170+ @defgroup hetf2 {he,sy,ky }tf2: triangular factor, level 2
171+ @defgroup hetrs {he,sy,ky }trs: triangular solve using factor
172+ @defgroup hetri {he,sy,ky }tri: triangular inverse
173173 @defgroup herfs {he,sy}rfs: iterative refinement
174174 @defgroup herfsx {he,sy}rfsx: iterative refinement, expert
175175 @defgroup heequb {he,sy}equb: equilibration, power of 2
176- @defgroup syconv syconv: convert to/from L and D from hetrf
176+ @defgroup syconv {sy,ky}conv: convert to/from L and D from hetrf
177177
178178 @defgroup hecon_3 {he,sy}con_3: condition number estimate
179- @defgroup hetri2 {he,sy}tri2: inverse
180- @defgroup hetri2x {he,sy}tri2x: inverse
179+ @defgroup hetri2 {he,sy,ky }tri2: inverse
180+ @defgroup hetri2x {he,sy,ky }tri2x:inverse
181181 @defgroup hetri_3 {he,sy}tri_3: inverse
182182 @defgroup hetri_3x {he,sy}tri_3x: inverse
183- @defgroup hetrs2 {he,sy}trs2: solve using factor
183+ @defgroup hetrs2 {he,sy,ky }trs2: solve using factor
184184 @defgroup hetrs_3 {he,sy}trs_3: solve using factor
185185
186- @defgroup heswapr {he,sy}swapr: apply 2-sided permutation
186+ @defgroup heswapr {he,sy,ky }swapr: apply 2-sided permutation
187187 @defgroup la_hercond la_hercond: Skeel condition number estimate
188188 @defgroup la_herfsx_extended la_herfsx_extended: step in herfsx
189189 @defgroup la_herpvgrw la_herpvgrw: reciprocal pivot growth
545545 @}
546546 @}
547547
548- @defgroup heev_top Hermitian/symmetric eigenvalues
548+ @defgroup heev_top Hermitian/symmetric/skew-symmetric eigenvalues
549549 @{
550550 @defgroup heev_driver_grp Standard eig driver, AV = VΛ
551551 @{
552552 @defgroup heev_driver --- full ---
553- @defgroup heev {he,sy}ev: eig, QR iteration
553+ @defgroup heev {he,sy,ky }ev: eig, QR iteration
554554 @defgroup heevd {he,sy}evd: eig, divide and conquer
555555 @defgroup heevr {he,sy}evr: eig, MRRR
556556 @defgroup heevx {he,sy}evx: eig, bisection
577577 @defgroup hbevx_2stage {hb,sb}evx_2stage: eig, bisection
578578
579579 @defgroup stev_driver --- tridiagonal ---
580- @defgroup stev stev: eig, QR iteration
580+ @defgroup stev {st,kt}ev: eig, QR iteration
581581 @defgroup stevd stevd: eig, divide and conquer
582582 @defgroup stevr stevr: eig, MRRR
583583 @defgroup stevx stevx: eig, bisection
589589 @defgroup stegr stegr: eig, bisection, see stemr
590590 @defgroup stein stein: eig, inverse iteration
591591 @defgroup stemr stemr: eig, relatively robust representation (RRR)
592- @defgroup steqr steqr: eig, QR iteration
592+ @defgroup steqr {st,kt}eqr: eig, QR iteration
593593 @}
594594
595595 @defgroup hegv_driver_grp Generalized eig driver, AV = BVΛ, etc.
596596 @{
597597 @defgroup hegv_driver --- full ---
598- @defgroup hegv {he,sy}gv: eig, QR iteration
598+ @defgroup hegv {he,sy,ky }gv: eig, QR iteration
599599 @defgroup hegv_2stage {he,sy}gv_2stage: eig, QR iteration, 2-stage
600600 @defgroup hegvd {he,sy}gvd: eig, divide and conquer
601601 @defgroup hegvx {he,sy}gvx: eig, bisection
615615 @{
616616 @defgroup heev_comp --- full ---
617617 @defgroup disna disna: eig condition numbers
618- @defgroup hetrd {he,sy}trd: reduction to tridiagonal
619- @defgroup hetd2 {he,sy}td2: reduction to tridiagonal, level 2
620- @defgroup latrd latrd: step in hetrd
618+ @defgroup hetrd {he,sy,ky }trd: reduction to tridiagonal
619+ @defgroup hetd2 {he,sy,ky }td2: reduction to tridiagonal, level 2
620+ @defgroup latrd latrd{,k}: step in hetrd
621621 @defgroup ungtr {un,or}gtr: generate Q from hetrd
622622 @defgroup unmtr {un,or}mtr: multiply by Q from hetrd
623623
643643
644644 @defgroup hegv_comp_grp Generalized eig computational routines
645645 @{
646- @defgroup hegst {he,sy}gst: reduction to standard form
647- @defgroup hegs2 {he,sy}gs2: reduction to standard form, level 2
646+ @defgroup hegst {he,sy,ky }gst: reduction to standard form
647+ @defgroup hegs2 {he,sy,ky }gs2: reduction to standard form, level 2
648648 @defgroup hpgst {hp,sp}gst: reduction to standard form, packed
649649 @defgroup hbgst {hb,sb}gst: reduction to standard form, banded
650650 @defgroup pbstf pbstf: split Cholesky factor, use with hbgst
798798
799799 @defgroup lanhs lanhs: Hessenberg
800800
801- @defgroup lanhe lan{he,sy}: Hermitian/symmetric matrix
801+ @defgroup lanhe lan{he,sy,ky }: Hermitian/symmetric/skew- symmetric matrix
802802 @defgroup lanhf lan{hf,sf}: Hermitian/symmetric matrix, RFP
803803 @defgroup lanhp lan{hp,sp}: Hermitian/symmetric matrix, packed
804804 @defgroup lanhb lan{hb,sb}: Hermitian/symmetric matrix, banded
805- @defgroup lanht lan{ht,st}: Hermitian/symmetric matrix, tridiagonal
805+ @defgroup lanht lan{ht,st,kt }: Hermitian/symmetric/skew- symmetric matrix, tridiagonal
806806
807807 @defgroup lantr lantr: triangular matrix
808808 @defgroup lantp lantp: triangular matrix, packed
@@ -934,9 +934,9 @@ https://www.netlib.org/xblas/
934934 @defgroup gemv gemv: general matrix-vector multiply
935935 @defgroup ger ger: general matrix rank-1 update
936936
937- @defgroup hemv {he,sy}mv: Hermitian/symmetric matrix-vector multiply ([cz]symv in LAPACK)
937+ @defgroup hemv {he,sy,ky }mv: Hermitian/symmetric/skew- symmetric matrix-vector multiply ([cz]symv in LAPACK)
938938 @defgroup her {he,sy}r: Hermitian/symmetric rank-1 update
939- @defgroup her2 {he,sy}r2: Hermitian/symmetric rank-2 update
939+ @defgroup her2 {he,sy,ky }r2: Hermitian/symmetric/skew- symmetric rank-2 update
940940
941941 @defgroup trmv trmv: triangular matrix-vector multiply
942942 @defgroup trsv trsv: triangular matrix-vector solve
@@ -963,9 +963,9 @@ https://www.netlib.org/xblas/
963963 @defgroup gemm gemm: general matrix-matrix multiply
964964 @defgroup gemmtr gemmtr: general matrix-matrix multiply with triangular output
965965
966- @defgroup hemm {he,sy}mm: Hermitian/symmetric matrix-matrix multiply
966+ @defgroup hemm {he,sy,ky }mm: Hermitian/symmetric/skew- symmetric matrix-matrix multiply
967967 @defgroup herk {he,sy}rk: Hermitian/symmetric rank-k update
968- @defgroup her2k {he,sy}r2k: Hermitian/symmetric rank-2k update
968+ @defgroup her2k {he,sy,ky }r2k: Hermitian/symmetric/skew- symmetric rank-2k update
969969
970970 @defgroup trmm trmm: triangular matrix-matrix multiply
971971 @defgroup trsm trsm: triangular matrix-matrix solve
0 commit comments