Skip to content

Commit 6cb65a2

Browse files
authored
Merge pull request #9 from Ben-Sacks/main
Update pkgdown articles, vignettes, readme, and news
2 parents d6fa122 + 539801e commit 6cb65a2

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

41 files changed

+2065
-137
lines changed

.Rbuildignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -9,3 +9,4 @@
99
^README\.Rmd$
1010
^_pkgdown\.yml$
1111
^doc$
12+
^Meta$

.gitignore

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -7,3 +7,5 @@
77
||||||| e5192a7
88
=======
99
>>>>>>> 33b54b319d3e6fcaa4e74b003a1864b97c9e7eb1
10+
/doc/
11+
/Meta/

DESCRIPTION

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
Package: ConversationAlign
22
Type: Package
33
Title: Process Text and Compute Linguistic Alignment in Conversation Transcripts
4-
Version: 0.3.2
4+
Version: 0.4.0
55
Authors@R: c(
66
person("Jamie", "Reilly",
77
role = c("aut", "cre"),

R/generate_shams.R

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,6 @@
22
#'
33
#' Generates a permutation of each individual dyad. Shuffled dyads may act as controls to their originals.
44
#'
5-
#' @name generate_shams
65
#' @param df_prep Output dataframe of prep_dyads().
76
#' @param seed (Optional) a seed for reproducibility in random sampling
87
#' @returns

R/summarize_dyads.R

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@ summarize_dyads <- function(df_prep, custom_lags = NULL, sumdat_only = TRUE, cor
119119
tidyr::pivot_longer(
120120
contains("AUC"),
121121
names_to = c("Dimension", "reshaped", "Lag"),
122-
names_pattern = "AUC_(.*)_(raw|scaled100)_(Immediate|Lag\\d|Lead\\d)",
122+
names_pattern = "AUC_(.*)_(raw|scaled50)_(Immediate|Lag\\d|Lead\\d)",
123123
values_to = "AUC"
124124
) %>%
125125
tidyr::pivot_wider( # pivot out the reshaped and lag columns

README.Rmd

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -127,6 +127,7 @@ knitr::kable(head(MaronGross_2013, 10), format = "pipe")
127127
- `omit_stops` T/F (default=T) option to remove stopwords
128128
- `lemmatize` T/F (default=T) lemmatize strings converting each entry to its dictionary form
129129
- `which_stoplist` quoted argument specifying stopword list to apply, options include `none`, `MIT_stops`, `SMART_stops`, `CA_OriginalStops`, or `Temple_stops25`. Default is `Temple_stops25`.
130+
- `remove_backchannel` T/F (default=F) option to preserve turns composed entirely of stopwords as NAs (when false) or remove the turn by 'squishing' the turns immediately preceding and following together.
130131
```{r, eval=F, message=F, warning=F}
131132
NurseryRhymes_Prepped <- prep_dyads(dat_read=NurseryRhymes, lemmatize=TRUE, omit_stops=T, which_stoplist="Temple_stops25")
132133
```
@@ -153,12 +154,25 @@ colnames(MarySumDat)
153154
knitr::kable(head(MarySumDat, 10), format = "simple", digits = 3)
154155
```
155156

157+
# Optional: Generate sham conversations
158+
## `generate_shams()`
159+
Some research questions may benefit from the use of control conversations that lack the temporal continuity found in real transcripts. ``generate_shams`` shuffles each individual interlocutor's time series, producing a corpus of conversations consisiting of the same production, but in a random order. This provides a control to compare with real corpus summary statistics.
160+
### <span style="color: darkred;">Arguments to `generate_shams()`:</span>
161+
- `dat_prep` dataframe created by ``prep_dyads()``function <br>
162+
- `seed` a number to supply as a seed for reproducible sampling <br>
163+
164+
```{r}
165+
MaryShams <- generate_shams(df_prep = NurseryRhymes_Prepped, seed = 202)
166+
knitr::kable(head(MaryShams, 10), format = "simple", digits = 3)
167+
```
168+
156169
# Optional: Generate corpus analytics
157170
## `corpus_analytics()`
158171
It is often critical to produce descriptives/summary statistics to characterize your language sample. This is typically a laborious process. ``corpus_analytics`` will do it for you, generating a near publication ready table of analytics that you can easily export to the specific journal format of your choice using any number of packages such as `flextable` or `tinytable`.
159172

160173
### <span style="color: darkred;">Arguments to `corpus_analytics()`:</span>
161174
- `dat_prep` dataframe created by ``prep_dyads()``function <br>
175+
162176
```{r, eval=T, warning=F, message=F}
163177
NurseryRhymes_Analytics <- corpus_analytics(dat_prep=NurseryRhymes_Prepped)
164178
knitr::kable(head(NurseryRhymes_Analytics, 10), format = "simple", digits = 2)

docs/404.html

Lines changed: 6 additions & 6 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

docs/LICENSE.html

Lines changed: 6 additions & 6 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)