|
| 1 | +### A Pluto.jl notebook ### |
| 2 | +# v0.20.1 |
| 3 | + |
| 4 | +using Markdown |
| 5 | +using InteractiveUtils |
| 6 | + |
| 7 | +# ╔═╡ 1575b3cc-b786-11ef-34ef-dd6f58044fcc |
| 8 | +using DrWatson |
| 9 | + |
| 10 | +# ╔═╡ 0306d9f3-c210-4236-b9db-9ecb29787f08 |
| 11 | +@quickactivate |
| 12 | + |
| 13 | +# ╔═╡ 8579e700-ef01-4ab9-a117-21bbf559d3dd |
| 14 | +using GraphRecipes, Plots, DataFrames, Random, GraphDynamicalSystems, Graphs, MetaGraphsNext |
| 15 | + |
| 16 | +# ╔═╡ 63b200cc-ae46-468e-ab25-e6d6ab58874b |
| 17 | +using DynamicalSystems: Attractors, trajectory, StateSpaceSets |
| 18 | + |
| 19 | +# ╔═╡ 90852030-deae-43d3-a573-124749d19d44 |
| 20 | +md""" |
| 21 | +# Synthesizing Graph Dynamical Systems |
| 22 | +
|
| 23 | +PONY Lab Group Meeting, 11/12/2024 |
| 24 | +""" |
| 25 | + |
| 26 | +# ╔═╡ 04361d06-11c1-468a-a97d-04a41b5d606a |
| 27 | +md""" |
| 28 | +## What's a GDS? |
| 29 | +
|
| 30 | +A model represented by |
| 31 | +
|
| 32 | +- A graph |
| 33 | +- Each vertex in the graph has a function |
| 34 | +- Edges in the graph denote which vertices are inputs to others |
| 35 | +- Each vertex has a state |
| 36 | +- Dynamics of the system depend on |
| 37 | + - Vertices' functions |
| 38 | + - The order you update them (_schedule_) |
| 39 | +""" |
| 40 | + |
| 41 | +# ╔═╡ 4a95f701-cf79-4800-aa5a-72c6ee4c2e13 |
| 42 | +md""" |
| 43 | +## Example GDS: Boolean Network |
| 44 | +""" |
| 45 | + |
| 46 | +# ╔═╡ e59b989c-2e88-4063-88d0-a2a4e3aae567 |
| 47 | +md""" |
| 48 | +## Why do we care about them? |
| 49 | +
|
| 50 | +- Executable models for bio, for example |
| 51 | +- Can use to study the effect of a drug on a biological system |
| 52 | +
|
| 53 | + |
| 54 | +""" |
| 55 | + |
| 56 | +# ╔═╡ c01be032-ec3f-4b7b-9698-90c7555cac50 |
| 57 | +md""" |
| 58 | +## Why synthesize? |
| 59 | +
|
| 60 | +- Constructing by hand is time consuming |
| 61 | +- Basically amounts to guess-and-check |
| 62 | +
|
| 63 | +To understand how we synthesize, let's return to our example network. What kind of information can we extract from it? |
| 64 | +""" |
| 65 | + |
| 66 | +# ╔═╡ 2092c9f8-515e-4674-ad76-fdb2f22c0439 |
| 67 | +md""" |
| 68 | +## Data from our BN |
| 69 | +
|
| 70 | +State space/single cell measurements |
| 71 | +""" |
| 72 | + |
| 73 | +# ╔═╡ 9d09bc34-043c-4793-96f6-c7db927fed42 |
| 74 | +md""" |
| 75 | +Steady state/mutation experiments |
| 76 | +""" |
| 77 | + |
| 78 | +# ╔═╡ 124b39da-e8a7-45d0-9a67-82dd08d16672 |
| 79 | +md""" |
| 80 | +## Types of Schedules |
| 81 | +
|
| 82 | +- **Asynchronous** |
| 83 | + - Choose a vertex at random from the network |
| 84 | + - Run its function to update its value |
| 85 | +- Synchronous |
| 86 | + - Run all vertices' functions to update their values |
| 87 | +- Bounded Asynchrony |
| 88 | + - Run subsets of the vertices at the same time |
| 89 | + - Tricky case, probably will ignore this for today |
| 90 | +""" |
| 91 | + |
| 92 | +# ╔═╡ b608b534-4753-4529-8852-089aff34fab9 |
| 93 | +md""" |
| 94 | +## Async BN |
| 95 | +
|
| 96 | +The `dynamic rule` is the asynchronous schedule mentioned before. |
| 97 | +""" |
| 98 | + |
| 99 | +# ╔═╡ aab65a05-e256-4140-ae83-6547985e01a2 |
| 100 | +md""" |
| 101 | +## State Space |
| 102 | +""" |
| 103 | + |
| 104 | +# ╔═╡ 04ed17cb-69bd-48eb-b294-af120fe26b19 |
| 105 | +mg = MetaGraph(SimpleDiGraph(), label_type = String) |
| 106 | + |
| 107 | +# ╔═╡ 8955d1d1-3cd0-4691-9c7f-f6179cc6e048 |
| 108 | +md""" |
| 109 | +## Steady State(s) |
| 110 | +""" |
| 111 | + |
| 112 | +# ╔═╡ bf0a7add-f668-4fcc-87d4-ad535bf93b12 |
| 113 | +md""" |
| 114 | +## Synthesizing |
| 115 | +
|
| 116 | +From the two types of data, two kinds of specifications: |
| 117 | +- State space specifies how a specific vertex's function should transform the state |
| 118 | +- Steady state specifies how a collection of vertex functions should behave |
| 119 | +
|
| 120 | +Refering to these as _local_ and _global_ constraints. |
| 121 | +""" |
| 122 | + |
| 123 | +# ╔═╡ 80136458-da57-4ea9-943c-bd6692fad780 |
| 124 | +md""" |
| 125 | +## "Global" Constraint |
| 126 | +
|
| 127 | +> The steady state of the model is `[1, 0, 0, 1, 1]` |
| 128 | +
|
| 129 | +This is a constraint on the steady state of the model when combining synthesized functions for all vertices. |
| 130 | +""" |
| 131 | + |
| 132 | +# ╔═╡ 606d1e0e-ee79-4b12-964a-c5d597508761 |
| 133 | +md""" |
| 134 | +## Discussion Question #1 |
| 135 | +
|
| 136 | +If an incorrect steady-state is reached, which vertex is to blame? |
| 137 | +""" |
| 138 | + |
| 139 | +# ╔═╡ 1f02a380-2f17-44d2-a0a7-e4f7f3974c4c |
| 140 | +begin |
| 141 | + mg2 = deepcopy(mg) |
| 142 | + bad_v = string([1, 0, 1, 1, 1]) |
| 143 | + add_vertex!(mg2, bad_v) |
| 144 | + add_edge!(mg2, string([1, 0, 0, 1, 1]), bad_v) |
| 145 | + plot( |
| 146 | + mg2.graph; |
| 147 | + names = mg2.vertex_labels, |
| 148 | + nodesize = 0.06, |
| 149 | + nodecolor = [:lightblue, :lightblue, :lightblue, :red], |
| 150 | + ) |
| 151 | +end |
| 152 | + |
| 153 | +# ╔═╡ a1759c77-2ff3-4722-a65c-25ecf50ac279 |
| 154 | +md""" |
| 155 | +## Discussion Question #2 |
| 156 | +
|
| 157 | +Assuming a synchronous schedule, how can we reconstruct the state space like we saw before? |
| 158 | +""" |
| 159 | + |
| 160 | +# ╔═╡ 8a243870-3d53-4312-b4d5-056f2372eb68 |
| 161 | +md""" |
| 162 | +## Extras |
| 163 | +""" |
| 164 | + |
| 165 | +# ╔═╡ 5879d4f1-6bba-4675-b34b-9a1fcc023441 |
| 166 | +seed = 42 |
| 167 | + |
| 168 | +# ╔═╡ a217cd51-8c4b-4e74-90d3-b8d22daa6d62 |
| 169 | +Random.seed!(seed) |
| 170 | + |
| 171 | +# ╔═╡ 964fca0e-b28d-4ebd-a2ad-3daf2ba2d4cd |
| 172 | +network = BooleanNetworks.sample_boolean_network(5, 3, seed) |
| 173 | + |
| 174 | +# ╔═╡ 452fda7d-e2f7-4162-a3d3-eef13ff3bdfc |
| 175 | +plot(network.graph; names = network.vertex_labels, nodesize = 0.2) |
| 176 | + |
| 177 | +# ╔═╡ 230f34b5-c160-4f06-b560-8306ae62e51e |
| 178 | +[(k => v[2]) for (k, v) in network.vertex_properties] |
| 179 | + |
| 180 | +# ╔═╡ d207a020-97e1-40ab-8f9b-8503cca9acf3 |
| 181 | +plot(network.graph; names = network.vertex_labels, nodesize = 0.2) |
| 182 | + |
| 183 | +# ╔═╡ 51c331eb-77ef-4fcb-afff-c62fbf77d398 |
| 184 | +async_bn = BooleanNetworks.abn(network) |
| 185 | + |
| 186 | +# ╔═╡ 6811c128-1aff-48e6-8af6-6946ebf7e6c1 |
| 187 | +trjs = [trajectory(async_bn, 100) for _ = 1:1000] |
| 188 | + |
| 189 | +# ╔═╡ a52b6f33-bd36-4dae-9e90-4201e30bab78 |
| 190 | +trjs[1][1][1:5] |
| 191 | + |
| 192 | +# ╔═╡ 8aeb938e-8cd2-4f0c-9bfc-9b35457b4e5d |
| 193 | +trjs[1] |
| 194 | + |
| 195 | +# ╔═╡ a16f15fe-491d-43a4-b41f-5e3b82c0ec85 |
| 196 | +ssp = begin |
| 197 | + for t in trjs |
| 198 | + for (f, s) in zip(t[1][1:end-1], t[1][2:end]) |
| 199 | + add_vertex!(mg, string(f)) |
| 200 | + add_vertex!(mg, string(s)) |
| 201 | + add_edge!(mg, string(f), string(s)) |
| 202 | + end |
| 203 | + end |
| 204 | + plot(mg.graph; names = mg.vertex_labels, nodesize = 0.05) |
| 205 | +end |
| 206 | + |
| 207 | +# ╔═╡ d7a3067a-5b81-4409-bcf7-0254bcd591fb |
| 208 | +ssp |
| 209 | + |
| 210 | +# ╔═╡ 8d39c39f-0897-43e8-942a-9a7884eb1dd4 |
| 211 | +ssp |
| 212 | + |
| 213 | +# ╔═╡ 320ce9dc-5390-42eb-9b09-3e73f1bdd28b |
| 214 | +attr = begin |
| 215 | + grid = Tuple(range(0, 1) for _ = 1:5) |
| 216 | + mapper = Attractors.AttractorsViaRecurrences(async_bn, grid) |
| 217 | + for _ = 1:1000 |
| 218 | + mapper(rand(0:1, 5)) |
| 219 | + end |
| 220 | + Attractors.extract_attractors(mapper) |
| 221 | +end |
| 222 | + |
| 223 | +# ╔═╡ e99505e5-6697-42c5-b763-77e5ee3d0158 |
| 224 | +attr[1] |
| 225 | + |
| 226 | +# ╔═╡ 743cb689-469e-48f1-82cc-f7e2abeadf9a |
| 227 | +md""" |
| 228 | +## Local Constraint |
| 229 | +
|
| 230 | +> In: `[1, 0, 0, 1, 1]`, out: `[1, 0, 0, 0, 1]` |
| 231 | +
|
| 232 | +This is a constraint on vertex `4`'s update function. |
| 233 | +
|
| 234 | +A satisfying function would be $(string(network.vertex_properties[4][2])[26:end]) |
| 235 | +""" |
| 236 | + |
| 237 | +# ╔═╡ Cell order: |
| 238 | +# ╟─90852030-deae-43d3-a573-124749d19d44 |
| 239 | +# ╟─04361d06-11c1-468a-a97d-04a41b5d606a |
| 240 | +# ╟─4a95f701-cf79-4800-aa5a-72c6ee4c2e13 |
| 241 | +# ╟─452fda7d-e2f7-4162-a3d3-eef13ff3bdfc |
| 242 | +# ╟─230f34b5-c160-4f06-b560-8306ae62e51e |
| 243 | +# ╟─e59b989c-2e88-4063-88d0-a2a4e3aae567 |
| 244 | +# ╟─c01be032-ec3f-4b7b-9698-90c7555cac50 |
| 245 | +# ╟─d207a020-97e1-40ab-8f9b-8503cca9acf3 |
| 246 | +# ╟─2092c9f8-515e-4674-ad76-fdb2f22c0439 |
| 247 | +# ╟─a52b6f33-bd36-4dae-9e90-4201e30bab78 |
| 248 | +# ╟─9d09bc34-043c-4793-96f6-c7db927fed42 |
| 249 | +# ╟─e99505e5-6697-42c5-b763-77e5ee3d0158 |
| 250 | +# ╟─124b39da-e8a7-45d0-9a67-82dd08d16672 |
| 251 | +# ╟─b608b534-4753-4529-8852-089aff34fab9 |
| 252 | +# ╠═51c331eb-77ef-4fcb-afff-c62fbf77d398 |
| 253 | +# ╟─aab65a05-e256-4140-ae83-6547985e01a2 |
| 254 | +# ╟─6811c128-1aff-48e6-8af6-6946ebf7e6c1 |
| 255 | +# ╠═8aeb938e-8cd2-4f0c-9bfc-9b35457b4e5d |
| 256 | +# ╠═04ed17cb-69bd-48eb-b294-af120fe26b19 |
| 257 | +# ╟─a16f15fe-491d-43a4-b41f-5e3b82c0ec85 |
| 258 | +# ╟─8955d1d1-3cd0-4691-9c7f-f6179cc6e048 |
| 259 | +# ╟─320ce9dc-5390-42eb-9b09-3e73f1bdd28b |
| 260 | +# ╟─d7a3067a-5b81-4409-bcf7-0254bcd591fb |
| 261 | +# ╟─bf0a7add-f668-4fcc-87d4-ad535bf93b12 |
| 262 | +# ╟─743cb689-469e-48f1-82cc-f7e2abeadf9a |
| 263 | +# ╟─80136458-da57-4ea9-943c-bd6692fad780 |
| 264 | +# ╟─606d1e0e-ee79-4b12-964a-c5d597508761 |
| 265 | +# ╟─1f02a380-2f17-44d2-a0a7-e4f7f3974c4c |
| 266 | +# ╟─a1759c77-2ff3-4722-a65c-25ecf50ac279 |
| 267 | +# ╟─8d39c39f-0897-43e8-942a-9a7884eb1dd4 |
| 268 | +# ╟─8a243870-3d53-4312-b4d5-056f2372eb68 |
| 269 | +# ╠═1575b3cc-b786-11ef-34ef-dd6f58044fcc |
| 270 | +# ╠═0306d9f3-c210-4236-b9db-9ecb29787f08 |
| 271 | +# ╠═a217cd51-8c4b-4e74-90d3-b8d22daa6d62 |
| 272 | +# ╠═5879d4f1-6bba-4675-b34b-9a1fcc023441 |
| 273 | +# ╠═964fca0e-b28d-4ebd-a2ad-3daf2ba2d4cd |
| 274 | +# ╠═8579e700-ef01-4ab9-a117-21bbf559d3dd |
| 275 | +# ╠═63b200cc-ae46-468e-ab25-e6d6ab58874b |
0 commit comments