|
| 1 | +package main |
| 2 | + |
| 3 | +import ( |
| 4 | + "fmt" |
| 5 | +) |
| 6 | + |
| 7 | +func main() { |
| 8 | + // Standard U.S. coin denominations in cents |
| 9 | + denominations := []int{1, 5, 10, 25, 50} |
| 10 | + |
| 11 | + // Test amounts |
| 12 | + amounts := []int{87, 42, 99, 33, 7} |
| 13 | + |
| 14 | + for _, amount := range amounts { |
| 15 | + // Find minimum number of coins |
| 16 | + minCoins := MinCoins(amount, denominations) |
| 17 | + |
| 18 | + // Find coin combination |
| 19 | + coinCombo := CoinCombination(amount, denominations) |
| 20 | + |
| 21 | + // Print results |
| 22 | + fmt.Printf("Amount: %d cents\n", amount) |
| 23 | + fmt.Printf("Minimum coins needed: %d\n", minCoins) |
| 24 | + fmt.Printf("Coin combination: %v\n", coinCombo) |
| 25 | + fmt.Println("---------------------------") |
| 26 | + } |
| 27 | +} |
| 28 | + |
| 29 | +// MinCoins returns the minimum number of coins needed to make the given amount. |
| 30 | +// If the amount cannot be made with the given denominations, return -1. |
| 31 | +func MinCoins(amount int, denominations []int) int { |
| 32 | + // TODO: Implement this function |
| 33 | + max := amount + 1 |
| 34 | + dp := make([]int, max) |
| 35 | + for i := 1; i < len(dp); i++ { |
| 36 | + dp[i] = max |
| 37 | + } |
| 38 | + |
| 39 | + for i := 1; i <= amount; i++ { |
| 40 | + for _, coin := range denominations { |
| 41 | + if i >= coin { |
| 42 | + dp[i] = min(dp[i], dp[i-coin] + 1) |
| 43 | + } |
| 44 | + } |
| 45 | + } |
| 46 | + |
| 47 | + if dp[amount] >= max { |
| 48 | + return -1 |
| 49 | + } |
| 50 | + |
| 51 | + return dp[amount] |
| 52 | +} |
| 53 | + |
| 54 | +// CoinCombination returns a map with the specific combination of coins that gives |
| 55 | +// the minimum number. The keys are coin denominations and values are the number of |
| 56 | +// coins used for each denomination. |
| 57 | +// If the amount cannot be made with the given denominations, return an empty map. |
| 58 | +func CoinCombination(amount int, denominations []int) map[int]int { |
| 59 | + // TODO: Implement this function |
| 60 | + if amount == 0 || len(denominations) == 0 { |
| 61 | + return make(map[int]int) |
| 62 | + } |
| 63 | + |
| 64 | + max := amount + 1 |
| 65 | + dp := make([]int, max) |
| 66 | + combinations := make([]map[int]int, max) |
| 67 | + for i := 1; i < len(dp); i++ { |
| 68 | + dp[i] = max |
| 69 | + combinations[i] = make(map[int]int) |
| 70 | + } |
| 71 | + combinations[0] = make(map[int]int) |
| 72 | + |
| 73 | + for i := 1; i <= amount; i++ { |
| 74 | + for _, coin := range denominations { |
| 75 | + if i >= coin && dp[i] > dp[i-coin] + 1 { |
| 76 | + dp[i] = dp[i-coin] + 1 |
| 77 | + |
| 78 | + combinations[i] = make(map[int]int) |
| 79 | + for k, v := range combinations[i-coin] { |
| 80 | + combinations[i][k] = v |
| 81 | + } |
| 82 | + combinations[i][coin]++ |
| 83 | + } |
| 84 | + } |
| 85 | + } |
| 86 | + |
| 87 | + if dp[amount] >= max { |
| 88 | + return make(map[int]int) |
| 89 | + } |
| 90 | + |
| 91 | + return combinations[amount] |
| 92 | +} |
0 commit comments