@@ -78,8 +78,9 @@ $V=\mathbb{R}^5$, specifically
7878 \end{cases}
7979\]
8080
81- As numerical verification, we will check that $\phi_3(e_2)=0$,
82- $\phi_3(e_3)=1$, $\phi_3(e_4)=0$:
81+ (package idiom is to use ` e() ` for basis vectors as opposed to
82+ Spivak's $v$). As numerical verification, we will check that
83+ $\phi_3(e_2)=0$, $\phi_3(e_3)=1$, $\phi_3(e_4)=0$:
8384
8485``` {r}
8586f <- as.function(phi(3))
@@ -200,15 +201,25 @@ We may express $b$ as the sum of its three terms, each with a
200201coefficient:
201202
202203``` {r}
203- 7 * phi(3) %X% phi(5) + 8 * phi(4) %X% phi(4) + 9 * phi(7) %X% phi(3)
204+ 7* phi(c(3,5)) + 8* phi(c(4,4)) + 9* phi(c(7,3))
204205```
205206
206207Above, observe that the order of the terms may differ between the two
207208methods, as per ` disordR ` discipline [ @hankin2022_disordR] , but they
208209are algebraically identical:
209210
210211``` {r}
211- b == 7 * phi(3) %X% phi(5) + 8 * phi(4) %X% phi(4) + 9 * phi(7) %X% phi(3)
212+ b == 7*phi(c(3,5)) + 8*phi(c(4,4)) + 9*phi(c(7,3))
213+ ```
214+
215+ ## Function ` Alt() `
216+
217+ Function ` Alt() ` returns an alternating tensor as documented in the
218+ ` Alt ` vignette in the package. It works nicely with ` phi() ` :
219+
220+ ``` {r}
221+ phi(1:3)
222+ Alt(6*phi(1:3))
212223```
213224
214225# References
0 commit comments