@@ -6,7 +6,7 @@ bibliography: stokes.bib
66link-citations : true
77vignette : >
88 %\VignetteEngine{knitr::rmarkdown}
9- %\VignetteIndexEntry{spraycross }
9+ %\VignetteIndexEntry{tensorprod }
1010 %\usepackage[utf8]{inputenc}
1111---
1212
@@ -24,7 +24,7 @@ registerS3method(
2424```
2525
2626``` {r out.width='20%', out.extra='style="float:right; padding:10px"',echo=FALSE}
27- knitr::include_graphics(system.file("help/figures/spray .png", package = "spray "))
27+ knitr::include_graphics(system.file("help/figures/stokes .png", package = "stokes "))
2828```
2929
3030``` {r, label=showAlt,comment=""}
9898
9999[ where $\phi_i(v_j)=\delta_ {ij}$,$v_1,\ldots,v_k$ being a basis for
100100$V$] is a basis for $\mathcal{J}^k(V)$, which therefore has dimension
101- $n^k$. Function ` spraycross2 ()` evaluates the tensor product and I
101+ $n^k$. Function ` tensorprod ()` evaluates the tensor product and I
102102give examples here.
103103
104104``` {r}
@@ -108,7 +108,7 @@ give examples here.
108108
109109Thus $a=4\phi_1\otimes\phi_1+3\phi_1\otimes\phi_2$ and
110110$b=7\phi_3\otimes\phi_5+8\phi_4\otimes\phi_4+9\phi_7\otimes\phi_3$.
111- Now the cross product $a\otimes b$ is given by ` spraycross ()` :
111+ Now the cross product $a\otimes b$ is given by ` tensorprod ()` :
112112
113113``` {r}
114114tensorprod(a,b)
0 commit comments