Skip to content

Commit f1da45f

Browse files
committed
leqslant not leq
1 parent f10d421 commit f1da45f

File tree

3 files changed

+5
-5
lines changed

3 files changed

+5
-5
lines changed

man/as.1form.Rd

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -45,14 +45,14 @@ The exterior derivative of a \eqn{k}-form \eqn{\phi}{phi} is a
4545
to calculate differentials of general \eqn{k}-forms. Specifically, if
4646

4747
\deqn{
48-
\phi=\sum_{1\leq i_i < \cdots < i_k\leq n} a_{i_1\ldots
48+
\phi=\sum_{1\leqslant i_i < \cdots < i_k\leqslant n} a_{i_1\ldots
4949
i_k}\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_k}
5050
}{omitted; see latex}
5151

5252
then
5353
\deqn{
5454
\mathrm{d}\phi=
55-
\sum_{1\leq i_i < \cdots < i_k\leq n}
55+
\sum_{1\leqslant i_i < \cdots < i_k\leqslant n}
5656
[\sum_{j=1}^nD_ja_{i_1\ldots
5757
i_k}\mathrm{d}x_j]\wedge\mathrm{d}x_{i_1}\wedge
5858
\cdots\wedge\mathrm{d}x_{i_k.}

man/kform.Rd

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -81,15 +81,15 @@ e(i,n)
8181
returns a matrix whose rows constitute a basis for the vector space
8282
\eqn{\Lambda^k(\mathbb{R}^n)}{L^k(R^n)} of \eqn{k}-forms:
8383

84-
\deqn{\phi=\sum_{1\leq i_1 < \cdots < i_k\leq n} a_{i_1\ldots
84+
\deqn{\phi=\sum_{1\leqslant i_1 < \cdots < i_k\leqslant n} a_{i_1\ldots
8585
i_k}\mathrm{d}x_{i_1}\wedge\cdots\wedge\mathrm{d}x_{i_k}}{omitted; see latex}
8686

8787
and indeed we have:
8888

8989
\deqn{a_{i_1\ldots i_k}=\phi\left(\mathbf{e}_{i_1},\ldots,\mathbf{e}_{i_k}\right)
9090
}{omitted; see latex}
9191

92-
where \eqn{\mathbf{e}_j,1\leq j\leq k}{e_j,1<=j<=k} is a basis for
92+
where \eqn{\mathbf{e}_j,1\leqslant j\leqslant k}{e_j,1<=j<=k} is a basis for
9393
\eqn{V}.
9494

9595
}

man/kinner.Rd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515

1616
\deqn{
1717
\left\langle\alpha,\beta\right\rangle=\det\left(
18-
\left\langle\alpha_i,\beta_j\right\rangle_{1\leq i,j\leq n}\right)
18+
\left\langle\alpha_i,\beta_j\right\rangle_{1\leqslant i,j\leqslant n}\right)
1919
}{ omitted}
2020

2121
and secondly, we extend to the whole of \eqn{\Lambda^k(V)}{omitted}

0 commit comments

Comments
 (0)