|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | + |
| 4 | +class DistanceNetwork(nn.Module): |
| 5 | + def __init__(self, n_feat, p_drop=0.1): |
| 6 | + super(DistanceNetwork, self).__init__() |
| 7 | + # |
| 8 | + self.proj_symm = nn.Linear(n_feat, 37*2) |
| 9 | + self.proj_asymm = nn.Linear(n_feat, 37+19) |
| 10 | + |
| 11 | + self.reset_parameter() |
| 12 | + |
| 13 | + def reset_parameter(self): |
| 14 | + # initialize linear layer for final logit prediction |
| 15 | + nn.init.zeros_(self.proj_symm.weight) |
| 16 | + nn.init.zeros_(self.proj_asymm.weight) |
| 17 | + nn.init.zeros_(self.proj_symm.bias) |
| 18 | + nn.init.zeros_(self.proj_asymm.bias) |
| 19 | + |
| 20 | + def forward(self, x): |
| 21 | + # input: pair info (B, L, L, C) |
| 22 | + |
| 23 | + # predict theta, phi (non-symmetric) |
| 24 | + logits_asymm = self.proj_asymm(x) |
| 25 | + logits_theta = logits_asymm[:,:,:,:37].permute(0,3,1,2) |
| 26 | + logits_phi = logits_asymm[:,:,:,37:].permute(0,3,1,2) |
| 27 | + |
| 28 | + # predict dist, omega |
| 29 | + logits_symm = self.proj_symm(x) |
| 30 | + logits_symm = logits_symm + logits_symm.permute(0,2,1,3) |
| 31 | + logits_dist = logits_symm[:,:,:,:37].permute(0,3,1,2) |
| 32 | + logits_omega = logits_symm[:,:,:,37:].permute(0,3,1,2) |
| 33 | + |
| 34 | + return logits_dist, logits_omega, logits_theta, logits_phi |
| 35 | + |
| 36 | +class MaskedTokenNetwork(nn.Module): |
| 37 | + def __init__(self, n_feat, p_drop=0.1): |
| 38 | + super(MaskedTokenNetwork, self).__init__() |
| 39 | + self.proj = nn.Linear(n_feat, 21) |
| 40 | + |
| 41 | + self.reset_parameter() |
| 42 | + |
| 43 | + def reset_parameter(self): |
| 44 | + nn.init.zeros_(self.proj.weight) |
| 45 | + nn.init.zeros_(self.proj.bias) |
| 46 | + |
| 47 | + def forward(self, x): |
| 48 | + B, N, L = x.shape[:3] |
| 49 | + logits = self.proj(x).permute(0,3,1,2).reshape(B, -1, N*L) |
| 50 | + |
| 51 | + return logits |
| 52 | + |
| 53 | +class LDDTNetwork(nn.Module): |
| 54 | + def __init__(self, n_feat, n_bin_lddt=50): |
| 55 | + super(LDDTNetwork, self).__init__() |
| 56 | + self.proj = nn.Linear(n_feat, n_bin_lddt) |
| 57 | + |
| 58 | + self.reset_parameter() |
| 59 | + |
| 60 | + def reset_parameter(self): |
| 61 | + nn.init.zeros_(self.proj.weight) |
| 62 | + nn.init.zeros_(self.proj.bias) |
| 63 | + |
| 64 | + def forward(self, x): |
| 65 | + logits = self.proj(x) # (B, L, 50) |
| 66 | + |
| 67 | + return logits.permute(0,2,1) |
| 68 | + |
| 69 | +class ExpResolvedNetwork(nn.Module): |
| 70 | + def __init__(self, d_msa, d_state, p_drop=0.1): |
| 71 | + super(ExpResolvedNetwork, self).__init__() |
| 72 | + self.norm_msa = nn.LayerNorm(d_msa) |
| 73 | + self.norm_state = nn.LayerNorm(d_state) |
| 74 | + self.proj = nn.Linear(d_msa+d_state, 1) |
| 75 | + |
| 76 | + self.reset_parameter() |
| 77 | + |
| 78 | + def reset_parameter(self): |
| 79 | + nn.init.zeros_(self.proj.weight) |
| 80 | + nn.init.zeros_(self.proj.bias) |
| 81 | + |
| 82 | + def forward(self, seq, state): |
| 83 | + B, L = seq.shape[:2] |
| 84 | + |
| 85 | + seq = self.norm_msa(seq) |
| 86 | + state = self.norm_state(state) |
| 87 | + feat = torch.cat((seq, state), dim=-1) |
| 88 | + logits = self.proj(feat) |
| 89 | + return logits.reshape(B, L) |
| 90 | + |
| 91 | + |
| 92 | + |
0 commit comments