Skip to content

Commit 3923d0c

Browse files
authored
Add files via upload
1 parent 5a88f04 commit 3923d0c

File tree

4 files changed

+8756
-0
lines changed

4 files changed

+8756
-0
lines changed
Lines changed: 143 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,143 @@
1+
(* ::Package:: *)
2+
3+
(************************************************************************)
4+
(* This file was generated automatically by the Mathematica front end. *)
5+
(* It contains Initialization cells from a Notebook file, which *)
6+
(* typically will have the same name as this file except ending in *)
7+
(* ".nb" instead of ".m". *)
8+
(* *)
9+
(* This file is intended to be loaded into the Mathematica kernel using *)
10+
(* the package loading commands Get or Needs. Doing so is equivalent *)
11+
(* to using the Evaluate Initialization Cells menu command in the front *)
12+
(* end. *)
13+
(* *)
14+
(* DO NOT EDIT THIS FILE. This entire file is regenerated *)
15+
(* automatically each time the parent Notebook file is saved in the *)
16+
(* Mathematica front end. Any changes you make to this file will be *)
17+
(* overwritten. *)
18+
(************************************************************************)
19+
20+
21+
22+
(* ::Code:: *)
23+
Int[(a_+b_.*x_+c_.*x_^2)^p_.,x_Symbol] :=
24+
Int[Cancel[(b/2+c*x)^(2*p)/c^p],x] /;
25+
FreeQ[{a,b,c},x] && EqQ[b^2-4*a*c,0] && IntegerQ[p]
26+
27+
28+
(* ::Code:: *)
29+
Int[(a_+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
30+
2*(a+b*x+c*x^2)^(p+1)/((2*p+1)*(b+2*c*x)) /;
31+
FreeQ[{a,b,c,p},x] && EqQ[b^2-4*a*c,0] && LtQ[p,-1]
32+
33+
34+
(* ::Code:: *)
35+
Int[1/Sqrt[a_+b_.*x_+c_.*x_^2],x_Symbol] :=
36+
(b/2+c*x)/Sqrt[a+b*x+c*x^2] \[Star] Int[1/(b/2+c*x),x] /;
37+
FreeQ[{a,b,c},x] && EqQ[b^2-4*a*c,0]
38+
39+
40+
(* ::Code:: *)
41+
Int[(a_+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
42+
(b+2*c*x)*(a+b*x+c*x^2)^p/(2*c*(2*p+1)) /;
43+
FreeQ[{a,b,c,p},x] && EqQ[b^2-4*a*c,0]
44+
45+
46+
(* ::Code:: *)
47+
Int[(a_+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
48+
With[{q=Rt[b^2-4*a*c,2]}, 1/c^p \[Star] Int[Simp[b/2-q/2+c*x,x]^p*Simp[b/2+q/2+c*x,x]^p,x]] /;
49+
FreeQ[{a,b,c},x] && IntegerQ[p] && NeQ[a,0] && PerfectSquareQ[b^2-4*a*c]
50+
51+
52+
(* ::Code:: *)
53+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
54+
Int[ExpandIntegrand[(a+b*x+c*x^2)^p,x],x] /;
55+
FreeQ[{a,b,c},x] && IGtQ[p,0]
56+
57+
58+
(* ::Code:: *)
59+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
60+
(b+2*c*x)*(a+b*x+c*x^2)^(p+1)/((p+1)*(b^2-4*a*c)) - 2*c*(2*p+3)/((p+1)*(b^2-4*a*c)) \[Star] Int[(a+b*x+c*x^2)^(p+1),x] /;
61+
FreeQ[{a,b,c},x] && ILtQ[p,-1]
62+
63+
64+
(* ::Code:: *)
65+
Int[1/(b_.*x_+c_.*x_^2),x_Symbol] :=
66+
Log[x]/b - Log[RemoveContent[b+c*x,x]]/b /;
67+
FreeQ[{b,c},x]
68+
69+
70+
(* ::Code:: *)
71+
Int[1/(a_+b_.*x_+c_.*x_^2),x_Symbol] :=
72+
With[{q=1-4*Simplify[a*c/b^2]}, -2/b \[Star] Subst[Int[1/(q-x^2),x],x,1+2*c*x/b] /;
73+
RationalQ[q] && (EqQ[q^2,1] || Not[RationalQ[b^2-4*a*c]])] /;
74+
FreeQ[{a,b,c},x]
75+
76+
77+
(* ::Code:: *)
78+
Int[1/(a_+b_.*x_+c_.*x_^2),x_Symbol] :=
79+
-2 \[Star] Subst[Int[1/Simp[b^2-4*a*c-x^2,x],x],x,b+2*c*x] /;
80+
FreeQ[{a,b,c},x]
81+
82+
83+
(* ::Code:: *)
84+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
85+
(b+2*c*x)*(a+b*x+c*x^2)^p/(2*c*(2*p+1)) - p*(b^2-4*a*c)/(2*c*(2*p+1)) \[Star] Int[(a+b*x+c*x^2)^(p-1),x] /;
86+
FreeQ[{a,b,c},x] && GtQ[p,0] && (IntegerQ[4*p] || IntegerQ[3*p])
87+
88+
89+
(* ::Code:: *)
90+
Int[1/(a_.+b_.*x_+c_.*x_^2)^(3/2),x_Symbol] :=
91+
-2*(b+2*c*x)/((b^2-4*a*c)*Sqrt[a+b*x+c*x^2]) /;
92+
FreeQ[{a,b,c},x] && NeQ[b^2-4*a*c,0]
93+
94+
95+
(* ::Code:: *)
96+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
97+
(b+2*c*x)*(a+b*x+c*x^2)^(p+1)/((p+1)*(b^2-4*a*c)) - 2*c*(2*p+3)/((p+1)*(b^2-4*a*c)) \[Star] Int[(a+b*x+c*x^2)^(p+1),x] /;
98+
FreeQ[{a,b,c},x] && LtQ[p,-1] && (IntegerQ[4*p] || IntegerQ[3*p])
99+
100+
101+
(* ::Code:: *)
102+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
103+
1/(2*c*(-4*c/(b^2-4*a*c))^p) \[Star] Subst[Int[Simp[1-x^2/(b^2-4*a*c),x]^p,x],x,b+2*c*x] /;
104+
FreeQ[{a,b,c,p},x] && GtQ[4*a-b^2/c,0]
105+
106+
107+
(* ::Code:: *)
108+
Int[1/Sqrt[b_.*x_+c_.*x_^2],x_Symbol] :=
109+
2 \[Star] Subst[Int[1/(1-c*x^2),x],x,x/Sqrt[b*x+c*x^2]] /;
110+
FreeQ[{b,c},x]
111+
112+
113+
(* ::Code:: *)
114+
Int[1/Sqrt[a_+b_.*x_+c_.*x_^2],x_Symbol] :=
115+
2 \[Star] Subst[Int[1/(4*c-x^2),x],x,(b+2*c*x)/Sqrt[a+b*x+c*x^2]] /;
116+
FreeQ[{a,b,c},x]
117+
118+
119+
(* ::Code:: *)
120+
Int[(b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
121+
(b*x+c*x^2)^p/(-c*(b*x+c*x^2)/(b^2))^p \[Star] Int[(-c*x/b-c^2*x^2/b^2)^p,x] /;
122+
FreeQ[{b,c},x] && (IntegerQ[4*p] || IntegerQ[3*p])
123+
124+
125+
(* ::Code:: *)
126+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
127+
4*Sqrt[(b+2*c*x)^2]/(b+2*c*x) \[Star] Subst[Int[x^(4*(p+1)-1)/Sqrt[b^2-4*a*c+4*c*x^4],x],x,(a+b*x+c*x^2)^(1/4)] /;
128+
FreeQ[{a,b,c},x] && IntegerQ[4*p]
129+
130+
131+
(* ::Code:: *)
132+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
133+
3*Sqrt[(b+2*c*x)^2]/(b+2*c*x) \[Star] Subst[Int[x^(3*(p+1)-1)/Sqrt[b^2-4*a*c+4*c*x^3],x],x,(a+b*x+c*x^2)^(1/3)] /;
134+
FreeQ[{a,b,c},x] && IntegerQ[3*p]
135+
136+
137+
(* ::Code:: *)
138+
Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] :=
139+
With[{q=Rt[b^2-4*a*c,2]}, -(a+b*x+c*x^2)^(p+1)/(q*(p+1)*((q-b-2*c*x)/(2*q))^(p+1))*Hypergeometric2F1[-p,p+1,p+2,(b+q+2*c*x)/(2*q)]] /;
140+
FreeQ[{a,b,c,p},x] && Not[IntegerQ[4*p]] && Not[IntegerQ[3*p]]
141+
142+
143+

0 commit comments

Comments
 (0)