|
| 1 | +(* ::Package:: *) |
| 2 | + |
| 3 | +(************************************************************************) |
| 4 | +(* This file was generated automatically by the Mathematica front end. *) |
| 5 | +(* It contains Initialization cells from a Notebook file, which *) |
| 6 | +(* typically will have the same name as this file except ending in *) |
| 7 | +(* ".nb" instead of ".m". *) |
| 8 | +(* *) |
| 9 | +(* This file is intended to be loaded into the Mathematica kernel using *) |
| 10 | +(* the package loading commands Get or Needs. Doing so is equivalent *) |
| 11 | +(* to using the Evaluate Initialization Cells menu command in the front *) |
| 12 | +(* end. *) |
| 13 | +(* *) |
| 14 | +(* DO NOT EDIT THIS FILE. This entire file is regenerated *) |
| 15 | +(* automatically each time the parent Notebook file is saved in the *) |
| 16 | +(* Mathematica front end. Any changes you make to this file will be *) |
| 17 | +(* overwritten. *) |
| 18 | +(************************************************************************) |
| 19 | + |
| 20 | + |
| 21 | + |
| 22 | +(* ::Code:: *) |
| 23 | +Int[(a_+b_.*x_+c_.*x_^2)^p_.,x_Symbol] := |
| 24 | + Int[Cancel[(b/2+c*x)^(2*p)/c^p],x] /; |
| 25 | +FreeQ[{a,b,c},x] && EqQ[b^2-4*a*c,0] && IntegerQ[p] |
| 26 | + |
| 27 | + |
| 28 | +(* ::Code:: *) |
| 29 | +Int[(a_+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 30 | + 2*(a+b*x+c*x^2)^(p+1)/((2*p+1)*(b+2*c*x)) /; |
| 31 | +FreeQ[{a,b,c,p},x] && EqQ[b^2-4*a*c,0] && LtQ[p,-1] |
| 32 | + |
| 33 | + |
| 34 | +(* ::Code:: *) |
| 35 | +Int[1/Sqrt[a_+b_.*x_+c_.*x_^2],x_Symbol] := |
| 36 | + (b/2+c*x)/Sqrt[a+b*x+c*x^2] \[Star] Int[1/(b/2+c*x),x] /; |
| 37 | +FreeQ[{a,b,c},x] && EqQ[b^2-4*a*c,0] |
| 38 | + |
| 39 | + |
| 40 | +(* ::Code:: *) |
| 41 | +Int[(a_+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 42 | + (b+2*c*x)*(a+b*x+c*x^2)^p/(2*c*(2*p+1)) /; |
| 43 | +FreeQ[{a,b,c,p},x] && EqQ[b^2-4*a*c,0] |
| 44 | + |
| 45 | + |
| 46 | +(* ::Code:: *) |
| 47 | +Int[(a_+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 48 | + With[{q=Rt[b^2-4*a*c,2]}, 1/c^p \[Star] Int[Simp[b/2-q/2+c*x,x]^p*Simp[b/2+q/2+c*x,x]^p,x]] /; |
| 49 | +FreeQ[{a,b,c},x] && IntegerQ[p] && NeQ[a,0] && PerfectSquareQ[b^2-4*a*c] |
| 50 | + |
| 51 | + |
| 52 | +(* ::Code:: *) |
| 53 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 54 | + Int[ExpandIntegrand[(a+b*x+c*x^2)^p,x],x] /; |
| 55 | +FreeQ[{a,b,c},x] && IGtQ[p,0] |
| 56 | + |
| 57 | + |
| 58 | +(* ::Code:: *) |
| 59 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 60 | + (b+2*c*x)*(a+b*x+c*x^2)^(p+1)/((p+1)*(b^2-4*a*c)) - 2*c*(2*p+3)/((p+1)*(b^2-4*a*c)) \[Star] Int[(a+b*x+c*x^2)^(p+1),x] /; |
| 61 | +FreeQ[{a,b,c},x] && ILtQ[p,-1] |
| 62 | + |
| 63 | + |
| 64 | +(* ::Code:: *) |
| 65 | +Int[1/(b_.*x_+c_.*x_^2),x_Symbol] := |
| 66 | + Log[x]/b - Log[RemoveContent[b+c*x,x]]/b /; |
| 67 | +FreeQ[{b,c},x] |
| 68 | + |
| 69 | + |
| 70 | +(* ::Code:: *) |
| 71 | +Int[1/(a_+b_.*x_+c_.*x_^2),x_Symbol] := |
| 72 | + With[{q=1-4*Simplify[a*c/b^2]}, -2/b \[Star] Subst[Int[1/(q-x^2),x],x,1+2*c*x/b] /; |
| 73 | + RationalQ[q] && (EqQ[q^2,1] || Not[RationalQ[b^2-4*a*c]])] /; |
| 74 | +FreeQ[{a,b,c},x] |
| 75 | + |
| 76 | + |
| 77 | +(* ::Code:: *) |
| 78 | +Int[1/(a_+b_.*x_+c_.*x_^2),x_Symbol] := |
| 79 | + -2 \[Star] Subst[Int[1/Simp[b^2-4*a*c-x^2,x],x],x,b+2*c*x] /; |
| 80 | +FreeQ[{a,b,c},x] |
| 81 | + |
| 82 | + |
| 83 | +(* ::Code:: *) |
| 84 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 85 | + (b+2*c*x)*(a+b*x+c*x^2)^p/(2*c*(2*p+1)) - p*(b^2-4*a*c)/(2*c*(2*p+1)) \[Star] Int[(a+b*x+c*x^2)^(p-1),x] /; |
| 86 | +FreeQ[{a,b,c},x] && GtQ[p,0] && (IntegerQ[4*p] || IntegerQ[3*p]) |
| 87 | + |
| 88 | + |
| 89 | +(* ::Code:: *) |
| 90 | +Int[1/(a_.+b_.*x_+c_.*x_^2)^(3/2),x_Symbol] := |
| 91 | + -2*(b+2*c*x)/((b^2-4*a*c)*Sqrt[a+b*x+c*x^2]) /; |
| 92 | +FreeQ[{a,b,c},x] && NeQ[b^2-4*a*c,0] |
| 93 | + |
| 94 | + |
| 95 | +(* ::Code:: *) |
| 96 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 97 | + (b+2*c*x)*(a+b*x+c*x^2)^(p+1)/((p+1)*(b^2-4*a*c)) - 2*c*(2*p+3)/((p+1)*(b^2-4*a*c)) \[Star] Int[(a+b*x+c*x^2)^(p+1),x] /; |
| 98 | +FreeQ[{a,b,c},x] && LtQ[p,-1] && (IntegerQ[4*p] || IntegerQ[3*p]) |
| 99 | + |
| 100 | + |
| 101 | +(* ::Code:: *) |
| 102 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 103 | + 1/(2*c*(-4*c/(b^2-4*a*c))^p) \[Star] Subst[Int[Simp[1-x^2/(b^2-4*a*c),x]^p,x],x,b+2*c*x] /; |
| 104 | +FreeQ[{a,b,c,p},x] && GtQ[4*a-b^2/c,0] |
| 105 | + |
| 106 | + |
| 107 | +(* ::Code:: *) |
| 108 | +Int[1/Sqrt[b_.*x_+c_.*x_^2],x_Symbol] := |
| 109 | + 2 \[Star] Subst[Int[1/(1-c*x^2),x],x,x/Sqrt[b*x+c*x^2]] /; |
| 110 | +FreeQ[{b,c},x] |
| 111 | + |
| 112 | + |
| 113 | +(* ::Code:: *) |
| 114 | +Int[1/Sqrt[a_+b_.*x_+c_.*x_^2],x_Symbol] := |
| 115 | + 2 \[Star] Subst[Int[1/(4*c-x^2),x],x,(b+2*c*x)/Sqrt[a+b*x+c*x^2]] /; |
| 116 | +FreeQ[{a,b,c},x] |
| 117 | + |
| 118 | + |
| 119 | +(* ::Code:: *) |
| 120 | +Int[(b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 121 | + (b*x+c*x^2)^p/(-c*(b*x+c*x^2)/(b^2))^p \[Star] Int[(-c*x/b-c^2*x^2/b^2)^p,x] /; |
| 122 | +FreeQ[{b,c},x] && (IntegerQ[4*p] || IntegerQ[3*p]) |
| 123 | + |
| 124 | + |
| 125 | +(* ::Code:: *) |
| 126 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 127 | + 4*Sqrt[(b+2*c*x)^2]/(b+2*c*x) \[Star] Subst[Int[x^(4*(p+1)-1)/Sqrt[b^2-4*a*c+4*c*x^4],x],x,(a+b*x+c*x^2)^(1/4)] /; |
| 128 | +FreeQ[{a,b,c},x] && IntegerQ[4*p] |
| 129 | + |
| 130 | + |
| 131 | +(* ::Code:: *) |
| 132 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 133 | + 3*Sqrt[(b+2*c*x)^2]/(b+2*c*x) \[Star] Subst[Int[x^(3*(p+1)-1)/Sqrt[b^2-4*a*c+4*c*x^3],x],x,(a+b*x+c*x^2)^(1/3)] /; |
| 134 | +FreeQ[{a,b,c},x] && IntegerQ[3*p] |
| 135 | + |
| 136 | + |
| 137 | +(* ::Code:: *) |
| 138 | +Int[(a_.+b_.*x_+c_.*x_^2)^p_,x_Symbol] := |
| 139 | + With[{q=Rt[b^2-4*a*c,2]}, -(a+b*x+c*x^2)^(p+1)/(q*(p+1)*((q-b-2*c*x)/(2*q))^(p+1))*Hypergeometric2F1[-p,p+1,p+2,(b+q+2*c*x)/(2*q)]] /; |
| 140 | +FreeQ[{a,b,c,p},x] && Not[IntegerQ[4*p]] && Not[IntegerQ[3*p]] |
| 141 | + |
| 142 | + |
| 143 | + |
0 commit comments