You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Many Linux systems are configured to not panic on oops; but allowing an
attacker to oops the system **really** often can make even bugs that look
completely unexploitable exploitable (like NULL dereferences and such) if
each crash elevates a refcount by one or a lock is taken in read mode, and
this causes a counter to eventually overflow.
The most interesting counters for this are 32 bits wide (like open-coded
refcounts that don't use refcount_t). (The ldsem reader count on 32-bit
platforms is just 16 bits, but probably nobody cares about 32-bit platforms
that much nowadays.)
So let's panic the system if the kernel is constantly oopsing.
The speed of oopsing 2^32 times probably depends on several factors, like
how long the stack trace is and which unwinder you're using; an empirically
important one is whether your console is showing a graphical environment or
a text console that oopses will be printed to.
In a quick single-threaded benchmark, it looks like oopsing in a vfork()
child with a very short stack trace only takes ~510 microseconds per run
when a graphical console is active; but switching to a text console that
oopses are printed to slows it down around 87x, to ~45 milliseconds per
run.
(Adding more threads makes this faster, but the actual oops printing
happens under &die_lock on x86, so you can maybe speed this up by a factor
of around 2 and then any further improvement gets eaten up by lock
contention.)
It looks like it would take around 8-12 days to overflow a 32-bit counter
with repeated oopsing on a multi-core X86 system running a graphical
environment; both me (in an X86 VM) and Seth (with a distro kernel on
normal hardware in a standard configuration) got numbers in that ballpark.
12 days aren't *that* short on a desktop system, and you'd likely need much
longer on a typical server system (assuming that people don't run graphical
desktop environments on their servers), and this is a *very* noisy and
violent approach to exploiting the kernel; and it also seems to take orders
of magnitude longer on some machines, probably because stuff like EFI
pstore will slow it down a ton if that's active.
Signed-off-by: Jann Horn <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Reviewed-by: Luis Chamberlain <[email protected]>
Signed-off-by: Kees Cook <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
0 commit comments