@@ -343,41 +343,41 @@ impl EdwardsPoint {
343
343
}
344
344
345
345
/// Add two points
346
- //https://iacr.org/archive/asiacrypt2008/53500329/53500329.pdf (3.1)
347
- // These formulas are unified, so for now we can use it for doubling. Will refactor later for speed
346
+ // (3.1) https://iacr.org/archive/asiacrypt2008/53500329/53500329.pdf
348
347
pub fn add ( & self , other : & EdwardsPoint ) -> Self {
349
- let aXX = self . X * other. X ; // aX1X2
350
- let dTT = FieldElement :: EDWARDS_D * self . T * other. T ; // dT1T2
351
- let ZZ = self . Z * other. Z ; // Z1Z2
352
- let YY = self . Y * other. Y ;
353
-
354
- let X = {
355
- let x_1 = ( self . X * other. Y ) + ( self . Y * other. X ) ;
356
- let x_2 = ZZ - dTT;
357
- x_1 * x_2
358
- } ;
359
- let Y = {
360
- let y_1 = YY - aXX;
361
- let y_2 = ZZ + dTT;
362
- y_1 * y_2
363
- } ;
364
-
365
- let T = {
366
- let t_1 = YY - aXX;
367
- let t_2 = ( self . X * other. Y ) + ( self . Y * other. X ) ;
368
- t_1 * t_2
369
- } ;
370
-
371
- let Z = { ( ZZ - dTT) * ( ZZ + dTT) } ;
372
-
373
- EdwardsPoint { X , Y , Z , T }
348
+ let A = self . X * other. X ;
349
+ let B = self . Y * other. Y ;
350
+ let C = self . T * other. T * FieldElement :: EDWARDS_D ;
351
+ let D = self . Z * other. Z ;
352
+ let E = ( self . X + self . Y ) * ( other. X + other. Y ) - A - B ;
353
+ let F = D - C ;
354
+ let G = D + C ;
355
+ let H = B - A ;
356
+ Self {
357
+ X : E * F ,
358
+ Y : G * H ,
359
+ Z : F * G ,
360
+ T : E * H ,
361
+ }
374
362
}
375
363
376
364
/// Double this point
377
- // XXX: See comment on addition, the formula is unified, so this will do for now
378
- //https://iacr.org/archive/asiacrypt2008/53500329/53500329.pdf (3.1)
365
+ // (3.3) https://iacr.org/archive/asiacrypt2008/53500329/53500329.pdf
379
366
pub fn double ( & self ) -> Self {
380
- self . add ( self )
367
+ let A = self . X . square ( ) ;
368
+ let B = self . Y . square ( ) ;
369
+ let C = self . Z . square ( ) . double ( ) ;
370
+ let D = A ;
371
+ let E = ( self . X + self . Y ) . square ( ) - A - B ;
372
+ let G = D + B ;
373
+ let F = G - C ;
374
+ let H = D - B ;
375
+ Self {
376
+ X : E * F ,
377
+ Y : G * H ,
378
+ Z : F * G ,
379
+ T : E * H ,
380
+ }
381
381
}
382
382
383
383
/// Check if this point is on the curve
0 commit comments