You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# PLSSVM - Parallel Least Squares Support Vector Machine
4
4
@@ -35,7 +35,7 @@ To predict to which class a new, unseen data point belongs, the SVM simply has t
35
35
This is very efficient since it only involves a single scalar product of the size corresponding to the numer of features of the data set.
36
36
37
37
<palign="center">
38
-
<imgalt="Basic idea of an Support Vector Machine as classification model."src=".figures/support_vector_machine.png"width="50%">
38
+
<imgalt="Basic idea of an Support Vector Machine as classification model."src="https://github.com/SC-SGS/PLSSVM/raw/main/.figures/support_vector_machine.png"width="50%">
39
39
</p>
40
40
41
41
However, normal SVMs suffer in their potential parallelizability.
@@ -188,13 +188,9 @@ Valid targets are:
188
188
-`intel`: compile for Intel GPUs; **at least one** architectural specification is necessary, e.g., `intel:skl`
189
189
190
190
At least one of the above targets must be present. If the option `PLSSVM_TARGET_PLATFORMS` is not present, the targets
191
-
are automatically determined using the Python3 `utility_scripts/plssvm_target_platforms.py` script (required Python3 dependencies:
If the architectural information for the requested GPU could not be retrieved, one option would be to have a look at:
238
234
239
-
- for NVIDIA GPUs: [Your GPU Compute Capability](https://developer.nvidia.com/cuda-gpus)
240
-
- for AMD GPUs: [clang AMDGPU backend usage](https://llvm.org/docs/AMDGPUUsage.html)
241
235
- for Intel GPUs and CPUs: [Ahead of Time Compilation](https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top/compilation/ahead-of-time-compilation.html) and [Intel graphics processor table](https://dgpu-docs.intel.com/devices/hardware-table.html)
242
236
243
237
@@ -498,6 +492,8 @@ The documentation of the current state of the main branch can be found [here](ht
<imgalt="Example classification task breast cancer decision boundary output."src=".figures/classification_example.png"width="80%">
1004
+
<imgalt="Example classification task breast cancer decision boundary output."src="https://github.com/SC-SGS/PLSSVM/raw/regression/.figures/classification_example.png"width="80%">
967
1005
</p>
968
1006
969
1007
A regression example comparing PLSSVM's `SVR` Python binding and `sklearn.SVR` using a sine curve:
@@ -1030,15 +1068,9 @@ plt.show()
1030
1068
```
1031
1069
with an example output:
1032
1070
<palign="center">
1033
-
<imgalt="Example regression output using a sine curve."src=".figures/regression_example.png"width="80%">
1071
+
<imgalt="Example regression output using a sine curve."src="https://github.com/SC-SGS/PLSSVM/raw/regression/.figures/regression_example.png"width="80%">
1034
1072
</p>
1035
1073
1036
-
**Note:** it may be necessary to set the environment variable `PYTHONPATH` to the `lib` folder in the PLSSVM install path.
0 commit comments