|
14 | 14 | #include "plssvm/detail/move_only_any.hpp" // plssvm::detail::move_only_any |
15 | 15 | #include "plssvm/detail/operators.hpp" // plssvm operator overloads for vectors |
16 | 16 | #include "plssvm/detail/ssize.hpp" // plssvm::detail::{ssize_t, ssize} |
| 17 | +#include "plssvm/detail/ssize.hpp" // plssvm::detail::ssize_t |
17 | 18 | #include "plssvm/detail/tracking/performance_tracker.hpp" // PLSSVM_DETAIL_TRACKING_PERFORMANCE_TRACKER_ADD_TRACKING_ENTRY, PLSSVM_DETAIL_TRACKING_PERFORMANCE_TRACKER_ADD_EVENT, plssvm::detail::tracking::tracking_entry |
18 | 19 | #include "plssvm/detail/utility.hpp" // plssvm::detail::to_underlying |
19 | 20 | #include "plssvm/exceptions/exceptions.hpp" // plssvm::invalid_parameter_exception |
@@ -110,7 +111,7 @@ std::pair<soa_matrix<real_type>, std::vector<unsigned long long>> csvm::conjugat |
110 | 111 | // -> 0 if the rhs already converged, 1 otherwise |
111 | 112 | const auto calculate_rhs_converged_mask = [eps, delta0, &mask](const std::vector<real_type> &delta_vec, const soa_matrix<real_type> &R_matr) { |
112 | 113 | #pragma omp parallel for shared(delta_vec, R_matr) |
113 | | - for (ssize_t row = 0; row < R_matr.num_rows(); ++row) { |
| 114 | + for (detail::ssize_t row = 0; row < R_matr.num_rows(); ++row) { |
114 | 115 | // check if this rhs is already marked as converged |
115 | 116 | if (mask[row] == 1) { |
116 | 117 | // check if this rhs is now converged |
@@ -227,44 +228,44 @@ std::pair<std::vector<real_type>, real_type> csvm::perform_dimensional_reduction |
227 | 228 |
|
228 | 229 | const std::chrono::steady_clock::time_point dimension_reduction_start_time = std::chrono::steady_clock::now(); |
229 | 230 |
|
230 | | - const ssize_t num_rows_reduced = static_cast<ssize_t>(A.num_rows() - 1); |
| 231 | + const detail::ssize_t num_rows_reduced = static_cast<ssize_t>(A.num_rows() - 1); |
231 | 232 |
|
232 | 233 | // create q_red vector and calculate QA_costs |
233 | 234 | std::vector<real_type> q_red(num_rows_reduced); |
234 | 235 | switch (params.kernel_type) { |
235 | 236 | case kernel_function_type::linear: |
236 | 237 | #pragma omp parallel for default(none) shared(q_red, A) firstprivate(num_rows_reduced) |
237 | | - for (ssize_t i = 0; i < num_rows_reduced; ++i) { |
| 238 | + for (detail::ssize_t i = 0; i < num_rows_reduced; ++i) { |
238 | 239 | q_red[i] = kernel_function<kernel_function_type::linear>(A, i, A, num_rows_reduced); |
239 | 240 | } |
240 | 241 | break; |
241 | 242 | case kernel_function_type::polynomial: |
242 | 243 | #pragma omp parallel for default(none) shared(q_red, A, params) firstprivate(num_rows_reduced) |
243 | | - for (ssize_t i = 0; i < num_rows_reduced; ++i) { |
| 244 | + for (detail::ssize_t i = 0; i < num_rows_reduced; ++i) { |
244 | 245 | q_red[i] = kernel_function<kernel_function_type::polynomial>(A, i, A, num_rows_reduced, params.degree, std::get<real_type>(params.gamma), params.coef0); |
245 | 246 | } |
246 | 247 | break; |
247 | 248 | case kernel_function_type::rbf: |
248 | 249 | #pragma omp parallel for default(none) shared(q_red, A, params) firstprivate(num_rows_reduced) |
249 | | - for (ssize_t i = 0; i < num_rows_reduced; ++i) { |
| 250 | + for (detail::ssize_t i = 0; i < num_rows_reduced; ++i) { |
250 | 251 | q_red[i] = kernel_function<kernel_function_type::rbf>(A, i, A, num_rows_reduced, std::get<real_type>(params.gamma)); |
251 | 252 | } |
252 | 253 | break; |
253 | 254 | case kernel_function_type::sigmoid: |
254 | 255 | #pragma omp parallel for default(none) shared(q_red, A, params) firstprivate(num_rows_reduced) |
255 | | - for (ssize_t i = 0; i < num_rows_reduced; ++i) { |
| 256 | + for (detail::ssize_t i = 0; i < num_rows_reduced; ++i) { |
256 | 257 | q_red[i] = kernel_function<kernel_function_type::sigmoid>(A, i, A, num_rows_reduced, std::get<real_type>(params.gamma), params.coef0); |
257 | 258 | } |
258 | 259 | break; |
259 | 260 | case kernel_function_type::laplacian: |
260 | 261 | #pragma omp parallel for default(none) shared(q_red, A, params) firstprivate(num_rows_reduced) |
261 | | - for (ssize_t i = 0; i < num_rows_reduced; ++i) { |
| 262 | + for (detail::ssize_t i = 0; i < num_rows_reduced; ++i) { |
262 | 263 | q_red[i] = kernel_function<kernel_function_type::laplacian>(A, i, A, num_rows_reduced, std::get<real_type>(params.gamma)); |
263 | 264 | } |
264 | 265 | break; |
265 | 266 | case kernel_function_type::chi_squared: |
266 | 267 | #pragma omp parallel for default(none) shared(q_red, A, params) firstprivate(num_rows_reduced) |
267 | | - for (ssize_t i = 0; i < num_rows_reduced; ++i) { |
| 268 | + for (detail::ssize_t i = 0; i < num_rows_reduced; ++i) { |
268 | 269 | q_red[i] = kernel_function<kernel_function_type::chi_squared>(A, i, A, num_rows_reduced, std::get<real_type>(params.gamma)); |
269 | 270 | } |
270 | 271 | break; |
|
0 commit comments