@@ -30,7 +30,7 @@ The four datasets are:
30304 . a dataset with ** four** classes created via ` sklearn.datasets.make_blobs `
3131
3232<p align =" center " >
33- <img alt =" plot_classifier_comparison.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/classifier_comparison.png " width =" 80 %" >
33+ <img alt =" plot_classifier_comparison.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/classifier_comparison.png " width =" 100 %" >
3434</p >
3535
3636``` text
@@ -121,7 +121,7 @@ Training score plssvm.SVC(C=10.0, decision_function_shape='ovo'): 0.95
121121This example showcases the decision boundary differences when using the different supported kernel functions and classification types in PLSSVM.
122122
123123<p align =" center " >
124- <img alt =" plot_different_classifiers.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/different_classifiers.png " width =" 80 %" >
124+ <img alt =" plot_different_classifiers.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/different_classifiers.png " width =" 100 %" >
125125</p >
126126
127127``` text
@@ -256,7 +256,7 @@ Again, with the same default parameters, PLSSVM also achieves a high accuracy of
256256This example is the standard feature discretization example from ` sklearn ` using PLSSVM as ` SVC ` implementation.
257257
258258<p align =" center " >
259- <img alt =" plot_rbf_parameters.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/feature_discretization.png " width =" 80 %" >
259+ <img alt =" plot_rbf_parameters.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/feature_discretization.png " width =" 100 %" >
260260</p >
261261
262262``` text
@@ -398,7 +398,7 @@ A small examples showing the different PLSSVM kernel functions for three differe
3983983 . irregular function
399399
400400<p align =" center " >
401- <img alt =" plot_svm_regression.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/svm_regression.png " width =" 80 %" >
401+ <img alt =" plot_svm_regression.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/svm_regression.png " width =" 100 %" >
402402</p >
403403
404404``` text
@@ -440,7 +440,7 @@ samples and 26'032 test samples with 3072 features each (32x32 RGB images) of ho
440440</p >
441441
442442<p align =" center " >
443- <img alt =" plot_SVHN.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/real_world/svhn.png " width =" 80 %" >
443+ <img alt =" plot_SVHN.py output " src =" https://github.com/SC-SGS/PLSSVM/raw/regression/.figures//sklearn_examples/real_world/svhn.png " width =" 1000 %" >
444444</p >
445445
446446``` text
0 commit comments