@@ -381,8 +381,8 @@ def _apply_augmentation(self, all_data, mask):
381381 return all_data , mask
382382
383383 # 1. Random rotation (0, 90, 180, 270 degrees)
384- # 75 % chance to apply rotation
385- if self .rng .random () < 0.75 :
384+ # 50 % chance to apply rotation
385+ if self .rng .random () < 0.50 :
386386 k = self .rng .integers (1 , 4 ) # 1, 2, or 3 (90°, 180°, 270°)
387387 all_data = torch .rot90 (all_data , k = k , dims = (- 2 , - 1 ))
388388 mask = torch .rot90 (mask , k = k , dims = (- 2 , - 1 ))
@@ -397,9 +397,9 @@ def _apply_augmentation(self, all_data, mask):
397397 all_data = torch .flip (all_data , dims = (- 2 ,))
398398 mask = torch .flip (mask , dims = (- 2 ,))
399399
400- # 4. Add Gaussian noise (30 % chance)
400+ # 4. Add Gaussian noise (10 % chance)
401401 # Small noise helps prevent overfitting to exact pixel values
402- if self .rng .random () < 0.3 :
402+ if self .rng .random () < 0.1 :
403403 noise_std = self .rng .uniform (0.005 , 0.02 )
404404 noise = torch .randn_like (all_data ) * noise_std
405405 all_data = all_data + noise
@@ -413,9 +413,9 @@ def _apply_augmentation(self, all_data, mask):
413413 mean = all_data [c ].mean ()
414414 all_data [c ] = contrast * (all_data [c ] - mean ) + mean + brightness
415415
416- # 6. Cutout/Random erasing (20 % chance)
416+ # 6. Cutout/Random erasing (5 % chance)
417417 # Prevents model from relying too heavily on specific spatial features
418- if self .rng .random () < 0.2 :
418+ if self .rng .random () < 0.05 :
419419 h , w = all_data .shape [- 2 :]
420420 cutout_size = int (min (h , w ) * self .rng .uniform (0.1 , 0.25 ))
421421 if cutout_size > 0 :
0 commit comments