|
1 | | -from utils.dataloaders.usps_0_6 import USPSDataset0_6 |
| 1 | +from pathlib import Path |
| 2 | + |
| 3 | +import numpy as np |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | +from PIL import Image |
| 7 | +from torchvision import transforms |
| 8 | + |
| 9 | +from utils.dataloaders import MNISTDataset0_3, USPSDataset0_6, USPSH5_Digit_7_9_Dataset |
| 10 | +from utils.load_data import load_data |
| 11 | + |
| 12 | + |
| 13 | +@pytest.mark.parametrize( |
| 14 | + "data_name, expected", |
| 15 | + [ |
| 16 | + ("usps_0-6", USPSDataset0_6), |
| 17 | + ("usps_7-9", USPSH5_Digit_7_9_Dataset), |
| 18 | + ("mnist_0-3", MNISTDataset0_3), |
| 19 | + # TODO: Add more datasets here |
| 20 | + ], |
| 21 | +) |
| 22 | +def test_load_data(data_name, expected): |
| 23 | + dataset = load_data( |
| 24 | + data_name, |
| 25 | + data_path=Path("data"), |
| 26 | + download=True, |
| 27 | + transform=transforms.ToTensor(), |
| 28 | + ) |
| 29 | + assert isinstance(dataset, expected) |
| 30 | + assert len(dataset) > 0 |
| 31 | + assert isinstance(dataset[0], tuple) |
| 32 | + assert isinstance(dataset[0][0], torch.Tensor) |
| 33 | + assert isinstance( |
| 34 | + dataset[0][1], (int, torch.Tensor, np.ndarray) |
| 35 | + ) # Should probably restrict this to only int or one-hot encoded tensor or array for consistency. |
2 | 36 |
|
3 | 37 |
|
4 | 38 | def test_uspsdataset0_6(): |
5 | | - from pathlib import Path |
6 | 39 | from tempfile import TemporaryDirectory |
7 | 40 |
|
8 | 41 | import h5py |
|
0 commit comments