Skip to content

Commit 2a050cf

Browse files
committed
added precision metric
1 parent c453251 commit 2a050cf

File tree

1 file changed

+94
-1
lines changed

1 file changed

+94
-1
lines changed

utils/metrics/precision.py

Lines changed: 94 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,105 @@
11
import torch
22
import torch.nn as nn
33

4+
USE_MEAN = True
5+
6+
# Precision = TP / (TP + FP)
7+
48

59
class Precision(nn.Module):
10+
"""Metric module for precision. Can calculate precision both as a mean of precisions or as brute function of true positives and false positives. This is for now controller with the USE_MEAN macro.
11+
12+
Parameters
13+
----------
14+
num_classes : int
15+
Number of classes in the dataset.
16+
"""
17+
618
def __init__(self, num_classes):
719
super().__init__()
820

921
self.num_classes = num_classes
1022

1123
def forward(self, y_true, y_pred):
12-
pass
24+
"""Calculates the precision score given number of classes and the true and predicted labels.
25+
26+
Parameters
27+
----------
28+
y_true : torch.tensor
29+
true labels
30+
y_pred : torch.tensor
31+
predicted labels
32+
33+
Returns
34+
-------
35+
torch.tensor
36+
precision score
37+
"""
38+
# One-hot encode the target tensor
39+
true_oh = torch.zeros(y_true.size(0), self.num_classes).scatter_(
40+
1, y_true.unsqueeze(1), 1
41+
)
42+
pred_oh = torch.zeros(y_pred.size(0), self.num_classes).scatter_(
43+
1, y_pred.unsqueeze(1), 1
44+
)
45+
46+
if USE_MEAN:
47+
tp = torch.sum(true_oh * pred_oh, 0)
48+
fp = torch.sum(~true_oh.bool() * pred_oh, 0)
49+
50+
else:
51+
tp = torch.sum(true_oh * pred_oh)
52+
fp = torch.sum(~true_oh[pred_oh.bool()].bool())
53+
54+
return torch.nanmean(tp / (tp + fp))
55+
56+
57+
def test_precision_case1():
58+
true_precision = 25.0 / 36 if USE_MEAN else 7.0 / 10
59+
60+
true1 = torch.tensor([0, 1, 2, 1, 0, 2, 1, 0, 2, 1])
61+
pred1 = torch.tensor([0, 2, 1, 1, 0, 2, 0, 0, 2, 1])
62+
P = Precision(3)
63+
precision1 = P(true1, pred1)
64+
assert precision1.allclose(torch.tensor(true_precision), atol=1e-5), (
65+
f"Precision Score: {precision1.item()}"
66+
)
67+
68+
69+
def test_precision_case2():
70+
true_precision = 8.0 / 15 if USE_MEAN else 6.0 / 15
71+
72+
true2 = torch.tensor([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
73+
pred2 = torch.tensor([0, 0, 4, 3, 4, 0, 4, 4, 2, 3, 4, 1, 2, 4, 0])
74+
P = Precision(5)
75+
precision2 = P(true2, pred2)
76+
assert precision2.allclose(torch.tensor(true_precision), atol=1e-5), (
77+
f"Precision Score: {precision2.item()}"
78+
)
79+
80+
81+
def test_precision_case3():
82+
true_precision = 3.0 / 4 if USE_MEAN else 4.0 / 5
83+
84+
true3 = torch.tensor([0, 0, 0, 1, 0])
85+
pred3 = torch.tensor([1, 0, 0, 1, 0])
86+
P = Precision(2)
87+
precision3 = P(true3, pred3)
88+
assert precision3.allclose(torch.tensor(true_precision), atol=1e-5), (
89+
f"Precision Score: {precision3.item()}"
90+
)
91+
92+
93+
def test_for_zero_denominator():
94+
true_precision = 0.0
95+
true4 = torch.tensor([1, 1, 1, 1, 1])
96+
pred4 = torch.tensor([0, 0, 0, 0, 0])
97+
P = Precision(2)
98+
precision4 = P(true4, pred4)
99+
assert precision4.allclose(torch.tensor(true_precision), atol=1e-5), (
100+
f"Precision Score: {precision4.item()}"
101+
)
102+
103+
104+
if __name__ == "__main__":
105+
pass

0 commit comments

Comments
 (0)