@@ -76,14 +76,9 @@ def _micro_acc(self):
7676 float
7777 Micro-average accuracy score.
7878 """
79- print (self .y_true , self .y_pred )
8079 return (self .y_true == self .y_pred ).float ().mean ().item ()
8180
8281 def __returnmetric__ (self ):
83- print (self .y_true , self .y_pred )
84- print (self .y_true == [], self .y_pred == [])
85- print (len (self .y_true ), len (self .y_pred ))
86- print (type (self .y_true ), type (self .y_pred ))
8782 if self .y_true == [] or self .y_pred == []:
8883 return 0.0
8984 if isinstance (self .y_true ,list ):
@@ -95,7 +90,7 @@ def __returnmetric__(self):
9590 self .y_pred = torch .cat (self .y_pred )
9691 return self ._micro_acc () if not self .macro_averaging else self ._macro_acc ()
9792
98- def __resetmetric__ (self ):
93+ def __reset__ (self ):
9994 self .y_true = []
10095 self .y_pred = []
10196 return None
@@ -121,9 +116,6 @@ def __resetmetric__(self):
121116 y_pred_1 = torch .tensor ([0 , 1 , 2 , 3 , 4 , 4 ])
122117 accuracy (y_true_1 , y_pred_1 )
123118 print (accuracy .__returnmetric__ ()) # 0.9166666865348816
124- #accuracy.__resetmetric__()
125- #accuracy(y_true, y_pred)
126- #accuracy(y_true_1, y_pred_1)
127119 accuracy .macro_averaging = False
128120 print (accuracy .__returnmetric__ ()) # 0.8333333134651184
129121 accuracy .__resetmetric__ ()
0 commit comments