|
| 1 | +from random import randint |
| 2 | + |
| 3 | +import pytest |
| 4 | + |
| 5 | +from utils.load_metric import MetricWrapper |
1 | 6 | from utils.metrics import Accuracy, F1Score, Precision, Recall |
2 | 7 |
|
3 | 8 |
|
| 9 | +@pytest.mark.parametrize( |
| 10 | + "metric, num_classes, macro_averaging", |
| 11 | + [ |
| 12 | + ("f1", randint(2, 10), False), |
| 13 | + ("f1", randint(2, 10), True), |
| 14 | + ("recall", randint(2, 10), False), |
| 15 | + ("recall", randint(2, 10), True), |
| 16 | + ("accuracy", randint(2, 10), False), |
| 17 | + ("accuracy", randint(2, 10), True), |
| 18 | + ("precision", randint(2, 10), False), |
| 19 | + ("precision", randint(2, 10), True), |
| 20 | + # TODO: Add test for EntropyPrediction |
| 21 | + ], |
| 22 | +) |
| 23 | +def test_metric_wrapper(metric, num_classes, macro_averaging): |
| 24 | + import numpy as np |
| 25 | + import torch |
| 26 | + |
| 27 | + y_true = torch.arange(num_classes, dtype=torch.int64) |
| 28 | + logits = torch.rand(num_classes, num_classes) |
| 29 | + |
| 30 | + metrics = MetricWrapper( |
| 31 | + metric, |
| 32 | + num_classes=num_classes, |
| 33 | + macro_averaging=macro_averaging, |
| 34 | + ) |
| 35 | + |
| 36 | + metrics(y_true, logits) |
| 37 | + score = metrics.accumulate() |
| 38 | + metrics.reset() |
| 39 | + empty_score = metrics.accumulate() |
| 40 | + |
| 41 | + assert isinstance(score, dict), "Expected a dictionary output." |
| 42 | + assert metric in score, f"Expected {metric} metric in the output." |
| 43 | + assert score[metric] >= 0, "Expected a non-negative value." |
| 44 | + assert np.isnan(empty_score[metric]), "Expected an empty list." |
| 45 | + |
| 46 | + |
4 | 47 | def test_recall(): |
5 | 48 | import torch |
6 | 49 |
|
|
0 commit comments