|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | + |
| 4 | + |
| 5 | +def one_hot_encode(y_true, num_classes): |
| 6 | + """One-hot encode the target tensor. |
| 7 | +
|
| 8 | + Args |
| 9 | + ---- |
| 10 | + y_true : torch.Tensor |
| 11 | + Target tensor. |
| 12 | + num_classes : int |
| 13 | + Number of classes in the dataset. |
| 14 | +
|
| 15 | + Returns |
| 16 | + ------- |
| 17 | + torch.Tensor |
| 18 | + One-hot encoded tensor. |
| 19 | + """ |
| 20 | + |
| 21 | + y_onehot = torch.zeros(y_true.size(0), num_classes) |
| 22 | + y_onehot.scatter_(1, y_true.unsqueeze(1), 1) |
| 23 | + return y_onehot |
| 24 | + |
| 25 | + |
| 26 | +class Recall(nn.Module): |
| 27 | + def __init__(self, num_classes): |
| 28 | + super().__init__() |
| 29 | + |
| 30 | + self.num_classes = num_classes |
| 31 | + |
| 32 | + def forward(self, y_true, y_pred): |
| 33 | + true_onehot = one_hot_encode(y_true, self.num_classes) |
| 34 | + pred_onehot = one_hot_encode(y_pred, self.num_classes) |
| 35 | + |
| 36 | + true_positives = (true_onehot * pred_onehot).sum() |
| 37 | + |
| 38 | + false_negatives = torch.sum(~pred_onehot[true_onehot.bool()].bool()) |
| 39 | + |
| 40 | + recall = true_positives / (true_positives + false_negatives) |
| 41 | + |
| 42 | + return recall |
| 43 | + |
| 44 | + |
| 45 | +def test_recall(): |
| 46 | + recall = Recall(7) |
| 47 | + |
| 48 | + y_true = torch.tensor([0, 1, 2, 3, 4, 5, 6]) |
| 49 | + y_pred = torch.tensor([2, 1, 2, 1, 4, 5, 6]) |
| 50 | + |
| 51 | + recall_score = recall(y_true, y_pred) |
| 52 | + |
| 53 | + assert recall_score.allclose(torch.tensor(0.7143), atol=1e-5), f"Recall Score: {recall_score.item()}" |
| 54 | + |
| 55 | + |
| 56 | +def test_one_hot_encode(): |
| 57 | + num_classes = 7 |
| 58 | + |
| 59 | + y_true = torch.tensor([0, 1, 2, 3, 4, 5, 6]) |
| 60 | + y_onehot = one_hot_encode(y_true, num_classes) |
| 61 | + |
| 62 | + assert y_onehot.shape == (7, 7), f"Shape: {y_onehot.shape}" |
0 commit comments