@@ -260,7 +260,7 @@ static const std::vector<TensorSpec> TrainingOnlyFeatures{
260
260
261
261
static const std::vector<TensorSpec> getInputFeatures () {
262
262
std::vector<TensorSpec> InputSpecs;
263
- for (const auto &Feature : FeatureMap )
263
+ for (const auto &Feature : getFeatureMap () )
264
264
InputSpecs.push_back (TensorSpec (TFFeedPrefix + Feature.name (), Feature));
265
265
append_range (InputSpecs, TrainingOnlyFeatures);
266
266
return InputSpecs;
@@ -272,7 +272,7 @@ TrainingLogger::TrainingLogger(StringRef LogFileName,
272
272
const ModelUnderTrainingRunner *MUTR)
273
273
: LogFileName(LogFileName), MUTR(MUTR) {
274
274
// The first output is the inlining decision.
275
- std::vector<TensorSpec> FT (FeatureMap .begin (), FeatureMap .end ());
275
+ std::vector<TensorSpec> FT (getFeatureMap () .begin (), getFeatureMap () .end ());
276
276
277
277
if (MUTR)
278
278
append_range (FT, MUTR->extraOutputsForLoggingSpecs ());
@@ -298,7 +298,7 @@ void TrainingLogger::logInlineEvent(const InlineEvent &Event,
298
298
const MLModelRunner &ModelRunner) {
299
299
L->startObservation ();
300
300
size_t CurrentFeature = 0 ;
301
- size_t FeatureMapSize = FeatureMap .size ();
301
+ size_t FeatureMapSize = getFeatureMap () .size ();
302
302
for (; CurrentFeature < FeatureMapSize; ++CurrentFeature)
303
303
L->logTensorValue (CurrentFeature,
304
304
reinterpret_cast <const char *>(
0 commit comments