You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
- Minor bug fix for the Object Detection (OD) use case preprocessing.
- Updated dataset naming of the Semantic Segmentation (SS) use case in YAML files and READMEs.
Signed-off-by: khaoula boutiche <[email protected]>
Copy file name to clipboardExpand all lines: semantic_segmentation/pretrained_models/deeplab_v3/README.md
+10-10Lines changed: 10 additions & 10 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -59,7 +59,7 @@ For an image resolution of NxM and P classes
59
59
To train the deeplab_v3 with backbone MobileNet v2 model with pretrained weights, from scratch or fine-tune it on your own dataset, you need to configure the [user_config.yaml](../../src/user_config.yaml) file following the
60
60
[tutorial](../../README.md) under the src section.
61
61
62
-
As an example, [deeplab_v3_mobilenetv2_05_16_512_fft.yaml](./ST_pretrainedmodel_public_dataset/pascal_voc_coco_2012/deeplab_v3_mobilenetv2_05_16_512_fft/deeplab_v3_mobilenetv2_05_16_512_fft_config.yaml) file is used to train on PASCAL VOC + COCO 2012 dataset. You can copy its content in the [user_config.yaml](../../src/user_config.yaml) file provided under
62
+
As an example, [deeplab_v3_mobilenetv2_05_16_512_fft.yaml](./ST_pretrainedmodel_public_dataset/coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_512_fft/deeplab_v3_mobilenetv2_05_16_512_fft_config.yaml) file is used to train on COCO 2017 + PASCAL VOC 2012 dataset. You can copy its content in the [user_config.yaml](../../src/user_config.yaml) file provided under
63
63
the src section to reproduce the results presented below.
64
64
65
65
## Deployment
@@ -73,16 +73,16 @@ To deploy your trained model, you need to configure the same [user_config.yaml](
73
73
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
74
74
75
75
76
-
### Reference **MPU** inference time based on PASCAL VOC + COCO 2012 segmentation dataset 21 classes (see Accuracy for details on dataset)
76
+
### Reference **MPU** inference time based on COCO 2017 + PASCAL VOC 2012 segmentation dataset 21 classes (see Accuracy for details on dataset)
77
77
| Model | Dataset | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
****To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
84
84
85
-
### Accuracy with PASCAL VOC + COCO 2012
85
+
### Accuracy with COCO 2017 + PASCAL VOC 2012
86
86
87
87
Dataset details: [link](http://host.robots.ox.ac.uk/pascal/VOC/voc2012/), License [Database Contents License (DbCL) v1.0](https://opendatacommons.org/licenses/dbcl/1-0/) , Number of classes: 21, Number of images: 11530
88
88
Please note, that the following accuracies are evaluated on Pascal VOC 2012 validation set (val.txt), and with a preprocessing resize with interpolation method 'bilinear'.
@@ -91,17 +91,17 @@ Moreover, IoU are averaged on all classes including background.
91
91
| Model Description | Resolution | Format | Accuracy | Averaged IoU |
This model, which does not include ASPP (Atrous Spatial Pyramid Pooling), was downloaded from the TensorFlow DeepLabV3 page on[Kaggle](https://www.kaggle.com/models/tensorflow/deeplabv3/).
102
102
103
103
-**DeepLabV3 float precision**:
104
-
This model is the result of using the [deeplab_v3_mobilenetv2_05_16_512_fft.yaml](./ST_pretrainedmodel_public_dataset/pascal_voc_coco_2012/deeplab_v3_mobilenetv2_05_16_512_fft/deeplab_v3_mobilenetv2_05_16_512_fft_config.yaml) configuration file to train the model on the PASCAL VOC + COCO 2012 dataset.
104
+
This model is the result of using the [deeplab_v3_mobilenetv2_05_16_512_fft.yaml](./ST_pretrainedmodel_public_dataset/coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_512_fft/deeplab_v3_mobilenetv2_05_16_512_fft_config.yaml) configuration file to train the model on the COCO 2017 + PASCAL VOC 2012 dataset.
105
105
106
106
-**DeepLabV3 Per channel**:
107
107
This model is quantized `per channel` version of DeepLabV3 float precision. It is generated using the quantization service with the [the quantization_config.yaml](../../src/config_file_examples/quantization_config.yaml) configuration file.
Copy file name to clipboardExpand all lines: semantic_segmentation/pretrained_models/deeplab_v3/ST_pretrainedmodel_public_dataset/coco_2017_pascal_voc_2012/deeplab_v3_mobilenetv2_05_16_512_fft/deeplab_v3_mobilenetv2_05_16_512_fft_config.yaml
0 commit comments