|
1 | 1 | from abc import ABC, abstractmethod
|
| 2 | +from typing import Any, Optional |
2 | 3 |
|
3 | 4 | from package_parser.processing.api.model import (
|
| 5 | + AbstractType, |
4 | 6 | Attribute,
|
5 | 7 | Class,
|
6 | 8 | Function,
|
7 | 9 | Parameter,
|
| 10 | + ParameterAssignment, |
8 | 11 | Result,
|
| 12 | + UnionType, |
9 | 13 | )
|
10 | 14 |
|
11 | 15 |
|
@@ -37,3 +41,242 @@ def compute_parameter_similarity(
|
37 | 41 | @abstractmethod
|
38 | 42 | def compute_result_similarity(self, result_a: Result, result_b: Result) -> float:
|
39 | 43 | pass
|
| 44 | + |
| 45 | + |
| 46 | +def distance_elements( |
| 47 | + list_a: list[Any], list_b: list[Any], are_similar=lambda x, y: x == y |
| 48 | +) -> float: |
| 49 | + if len(list_a) == 0: |
| 50 | + return len(list_b) |
| 51 | + if len(list_b) == 0: |
| 52 | + return len(list_a) |
| 53 | + if are_similar(list_a[0], list_b[0]): |
| 54 | + return distance_elements(list_a[1:], list_b[1:]) |
| 55 | + return 1 + min( |
| 56 | + distance_elements(list_a[1:], list_b), |
| 57 | + distance_elements(list_a, list_b[1:]), |
| 58 | + distance_elements(list_a[1:], list_b[1:]), |
| 59 | + ) |
| 60 | + |
| 61 | + |
| 62 | +class SimpleDiffer(AbstractDiffer): |
| 63 | + assigned_by_look_up_similarity: dict[ |
| 64 | + ParameterAssignment, dict[ParameterAssignment, float] |
| 65 | + ] |
| 66 | + |
| 67 | + def __init__(self): |
| 68 | + distance_between_implicit_and_explicit = 0.3 |
| 69 | + distance_between_vararg_and_normal = 0.3 |
| 70 | + distance_between_position_and_named = 0.3 |
| 71 | + distance_between_both_to_one = 0.15 |
| 72 | + distance_between_one_to_both = 0.15 |
| 73 | + self.assigned_by_look_up_similarity = { |
| 74 | + ParameterAssignment.IMPLICIT: { |
| 75 | + ParameterAssignment.IMPLICIT: 1, |
| 76 | + ParameterAssignment.NAMED_VARARG: 1 |
| 77 | + - distance_between_implicit_and_explicit |
| 78 | + - distance_between_vararg_and_normal |
| 79 | + - distance_between_position_and_named, |
| 80 | + ParameterAssignment.POSITIONAL_VARARG: 1 |
| 81 | + - distance_between_implicit_and_explicit |
| 82 | + - distance_between_vararg_and_normal, |
| 83 | + ParameterAssignment.POSITION_OR_NAME: 1 |
| 84 | + - distance_between_implicit_and_explicit, |
| 85 | + ParameterAssignment.NAME_ONLY: 1 |
| 86 | + - distance_between_implicit_and_explicit, |
| 87 | + ParameterAssignment.POSITION_ONLY: 1 |
| 88 | + - distance_between_implicit_and_explicit, |
| 89 | + }, |
| 90 | + ParameterAssignment.NAMED_VARARG: { |
| 91 | + ParameterAssignment.IMPLICIT: 1 |
| 92 | + - distance_between_implicit_and_explicit |
| 93 | + - distance_between_vararg_and_normal |
| 94 | + - distance_between_position_and_named, |
| 95 | + ParameterAssignment.NAMED_VARARG: 1, |
| 96 | + ParameterAssignment.POSITIONAL_VARARG: 1 |
| 97 | + - distance_between_position_and_named, |
| 98 | + ParameterAssignment.POSITION_OR_NAME: 1 |
| 99 | + - distance_between_vararg_and_normal |
| 100 | + - distance_between_one_to_both, |
| 101 | + ParameterAssignment.NAME_ONLY: 1 - distance_between_vararg_and_normal, |
| 102 | + ParameterAssignment.POSITION_ONLY: 1 |
| 103 | + - distance_between_vararg_and_normal |
| 104 | + - distance_between_position_and_named, |
| 105 | + }, |
| 106 | + ParameterAssignment.POSITIONAL_VARARG: { |
| 107 | + ParameterAssignment.IMPLICIT: 1 |
| 108 | + - distance_between_implicit_and_explicit |
| 109 | + - distance_between_vararg_and_normal, |
| 110 | + ParameterAssignment.NAMED_VARARG: 1 |
| 111 | + - distance_between_position_and_named, |
| 112 | + ParameterAssignment.POSITIONAL_VARARG: 1, |
| 113 | + ParameterAssignment.POSITION_OR_NAME: 1 |
| 114 | + - distance_between_vararg_and_normal |
| 115 | + - distance_between_one_to_both, |
| 116 | + ParameterAssignment.NAME_ONLY: 1 |
| 117 | + - distance_between_vararg_and_normal |
| 118 | + - distance_between_position_and_named, |
| 119 | + ParameterAssignment.POSITION_ONLY: 1 |
| 120 | + - distance_between_vararg_and_normal, |
| 121 | + }, |
| 122 | + ParameterAssignment.POSITION_OR_NAME: { |
| 123 | + ParameterAssignment.IMPLICIT: 1 |
| 124 | + - distance_between_implicit_and_explicit, |
| 125 | + ParameterAssignment.NAMED_VARARG: 1 |
| 126 | + - distance_between_vararg_and_normal |
| 127 | + - distance_between_both_to_one, |
| 128 | + ParameterAssignment.POSITIONAL_VARARG: 1 |
| 129 | + - distance_between_vararg_and_normal |
| 130 | + - distance_between_both_to_one, |
| 131 | + ParameterAssignment.POSITION_OR_NAME: 1, |
| 132 | + ParameterAssignment.NAME_ONLY: 1 - distance_between_both_to_one, |
| 133 | + ParameterAssignment.POSITION_ONLY: 1 - distance_between_both_to_one, |
| 134 | + }, |
| 135 | + ParameterAssignment.NAME_ONLY: { |
| 136 | + ParameterAssignment.IMPLICIT: 1 |
| 137 | + - distance_between_implicit_and_explicit, |
| 138 | + ParameterAssignment.NAMED_VARARG: 1 |
| 139 | + - distance_between_vararg_and_normal, |
| 140 | + ParameterAssignment.POSITIONAL_VARARG: 1 |
| 141 | + - distance_between_vararg_and_normal |
| 142 | + - distance_between_position_and_named, |
| 143 | + ParameterAssignment.POSITION_OR_NAME: 1 - distance_between_one_to_both, |
| 144 | + ParameterAssignment.NAME_ONLY: 1, |
| 145 | + ParameterAssignment.POSITION_ONLY: 1 |
| 146 | + - distance_between_position_and_named, |
| 147 | + }, |
| 148 | + ParameterAssignment.POSITION_ONLY: { |
| 149 | + ParameterAssignment.IMPLICIT: 1 |
| 150 | + - distance_between_implicit_and_explicit, |
| 151 | + ParameterAssignment.NAMED_VARARG: 1 |
| 152 | + - distance_between_vararg_and_normal |
| 153 | + - distance_between_position_and_named, |
| 154 | + ParameterAssignment.POSITIONAL_VARARG: 1 |
| 155 | + - distance_between_vararg_and_normal, |
| 156 | + ParameterAssignment.POSITION_OR_NAME: 1 - distance_between_one_to_both, |
| 157 | + ParameterAssignment.NAME_ONLY: 1 - distance_between_position_and_named, |
| 158 | + ParameterAssignment.POSITION_ONLY: 1, |
| 159 | + }, |
| 160 | + } |
| 161 | + |
| 162 | + def compute_class_similarity(self, class_a: Class, class_b: Class) -> float: |
| 163 | + name_similarity = self._compute_name_similarity(class_a.name, class_b.name) |
| 164 | + attributes_similarity = distance_elements( |
| 165 | + class_a.instance_attributes, class_b.instance_attributes |
| 166 | + ) |
| 167 | + attributes_similarity = attributes_similarity / ( |
| 168 | + max(len(class_a.instance_attributes), len(class_b.instance_attributes), 1) |
| 169 | + ) |
| 170 | + attributes_similarity = 1 - attributes_similarity |
| 171 | + |
| 172 | + code_similarity = self._compute_code_similarity(class_a.code, class_b.code) |
| 173 | + return (name_similarity + attributes_similarity + code_similarity) / 3 |
| 174 | + |
| 175 | + def _compute_name_similarity(self, name_a: str, name_b: str) -> float: |
| 176 | + name_similarity = distance_elements([*name_a], [*name_b]) / max( |
| 177 | + len(name_a), len(name_b), 1 |
| 178 | + ) |
| 179 | + return 1 - name_similarity |
| 180 | + |
| 181 | + def compute_attribute_similarity( |
| 182 | + self, |
| 183 | + attributes_a: Attribute, |
| 184 | + attributes_b: Attribute, |
| 185 | + ) -> float: |
| 186 | + name_similarity = self._compute_name_similarity( |
| 187 | + attributes_a.name, attributes_b.name |
| 188 | + ) |
| 189 | + type_list_a = [attributes_a.types] |
| 190 | + if attributes_a.types is not None and isinstance(attributes_a, UnionType): |
| 191 | + type_list_a = [attributes_a.types] |
| 192 | + type_list_b = [attributes_b.types] |
| 193 | + if attributes_b.types is not None and isinstance(attributes_b, UnionType): |
| 194 | + type_list_b = [attributes_a.types] |
| 195 | + type_similarity = distance_elements(type_list_a, type_list_b) / max( |
| 196 | + len(type_list_a), len(type_list_b), 1 |
| 197 | + ) |
| 198 | + type_similarity = 1 - type_similarity |
| 199 | + return (name_similarity + type_similarity) / 2 |
| 200 | + |
| 201 | + def compute_function_similarity( |
| 202 | + self, function_a: Function, function_b: Function |
| 203 | + ) -> float: |
| 204 | + code_similarity = self._compute_code_similarity( |
| 205 | + function_a.code, function_b.code |
| 206 | + ) |
| 207 | + name_similarity = self._compute_name_similarity( |
| 208 | + function_a.name, function_b.name |
| 209 | + ) |
| 210 | + |
| 211 | + def are_parameters_similar(parameter_a: Parameter, parameter_b: Parameter): |
| 212 | + return self.compute_parameter_similarity(parameter_a, parameter_b) == 1 |
| 213 | + |
| 214 | + parameter_similarity = distance_elements( |
| 215 | + function_a.parameters, |
| 216 | + function_b.parameters, |
| 217 | + are_similar=are_parameters_similar, |
| 218 | + ) / max(len(function_a.parameters), len(function_b.parameters), 1) |
| 219 | + parameter_similarity = 1 - parameter_similarity |
| 220 | + |
| 221 | + return (code_similarity + name_similarity + parameter_similarity) / 3 |
| 222 | + |
| 223 | + def _compute_code_similarity(self, code_a: str, code_b: str) -> float: |
| 224 | + split_a = code_a.split("\n") |
| 225 | + split_b = code_b.split("\n") |
| 226 | + diff_code = distance_elements(split_a, split_b) / max( |
| 227 | + len(split_a), len(split_b), 1 |
| 228 | + ) |
| 229 | + return 1 - diff_code |
| 230 | + |
| 231 | + def compute_parameter_similarity( |
| 232 | + self, parameter_a: Parameter, parameter_b: Parameter |
| 233 | + ) -> float: |
| 234 | + parameter_name_similarity = self._compute_name_similarity( |
| 235 | + parameter_a.name, parameter_b.name |
| 236 | + ) |
| 237 | + parameter_type_similarity = self._compute_type_similarity( |
| 238 | + parameter_a.type, parameter_b.type |
| 239 | + ) |
| 240 | + parameter_assignment_similarity = self._compute_assignment_similarity( |
| 241 | + parameter_a.assigned_by, parameter_b.assigned_by |
| 242 | + ) |
| 243 | + return ( |
| 244 | + parameter_name_similarity |
| 245 | + + parameter_type_similarity |
| 246 | + + parameter_assignment_similarity |
| 247 | + ) / 3 |
| 248 | + |
| 249 | + def _compute_type_similarity( |
| 250 | + self, type_a: Optional[AbstractType], type_b: Optional[AbstractType] |
| 251 | + ) -> float: |
| 252 | + if type_a is None: |
| 253 | + if type_b is None: |
| 254 | + return 1 |
| 255 | + return 0 |
| 256 | + if type_b is None: |
| 257 | + return 0 |
| 258 | + |
| 259 | + def are_types_similar( |
| 260 | + abstract_type_a: AbstractType, abstract_type_b: AbstractType |
| 261 | + ): |
| 262 | + return abstract_type_a.to_json() == abstract_type_b.to_json() |
| 263 | + |
| 264 | + type_list_a = self._create_list_from_type(type_a) |
| 265 | + type_list_b = self._create_list_from_type(type_b) |
| 266 | + diff_elements = distance_elements( |
| 267 | + type_list_a, type_list_b, are_similar=are_types_similar |
| 268 | + ) / max(len(type_list_a), len(type_list_b), 1) |
| 269 | + return 1 - diff_elements |
| 270 | + |
| 271 | + def _create_list_from_type(self, abstract_type: AbstractType): |
| 272 | + if isinstance(abstract_type, UnionType): |
| 273 | + return abstract_type.types |
| 274 | + return [abstract_type] |
| 275 | + |
| 276 | + def _compute_assignment_similarity( |
| 277 | + self, assigned_by_a: ParameterAssignment, assigned_by_b: ParameterAssignment |
| 278 | + ) -> float: |
| 279 | + return self.assigned_by_look_up_similarity[assigned_by_a][assigned_by_b] |
| 280 | + |
| 281 | + def compute_result_similarity(self, result_a: Result, result_b: Result) -> float: |
| 282 | + return self._compute_name_similarity(result_a.name, result_b.name) |
0 commit comments