-
Notifications
You must be signed in to change notification settings - Fork 239
Open
Description
when I use the ultra_chat 200k data (without regenerating the assistant data from the target model) to train the llama3.1-8b-instruct model, the training acc is only around 35% and loss around 20. I used 16xh100 and train_micro_batch_size_per_gpu=1 / gradient_accumulation_steps=2. It was found that the loss_mask generation method did not match the tokenizer. This problem has been fixed. Now it is ensured that the token after assistant is set to 1. Anyone can help on this issue. Thanks a lot.
Training Code:
commit : e0d1b45
EAGLE/eagle/traineagle3
training script:
torchrun \
--nnodes 2\
--nproc_per_node=8 \
--node_rank 0 \
--master_addr 127.0.0.1 \
--master_port 8081 \
main.py \
--basepath $model_path \
--trainpath $train_data_set \
--testpath $test_data_set \
--savedir $savedir \
--deepspeed_config ds_config.json
config.json
{
"architectures": [
"LlamaForCausalLM"
],
"bos_token_id": 128000,
"eos_token_id": [
128001,
128008,
128009
],
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 14336,
"max_position_embeddings": 2048,
"model_type": "llama",
"num_attention_heads": 32,
"num_key_value_heads": 8,
"num_hidden_layers": 1,
"pad_token_id": 128009,
"rms_norm_eps": 1e-05,
"tie_word_embeddings": false,
"torch_dtype": "bfloat16",
"transformers_version": "4.28.1",
"use_cache": true,
"vocab_size": 128256,
"draft_vocab_size": 32000
}
ds_config.json :
{
"bf16": {
"enabled": "true",
"auto_cast": "true"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": 5e-5,
"weight_decay": 0.0,
"adam_w_mode": true,
"betas": [
0.9,
0.95
]
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": 5e-7,
"warmup_max_lr": 5e-5,
"warmup_num_steps": 5000,
"total_num_steps": 230000
}
},
"zero_optimization": {
"stage": 2,
"stage3_gather_16bit_weights_on_model_save": true,
"allgather_partitions": true,
"allgather_bucket_size": 2e8,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 2e8,
"contiguous_gradients": true
},
"gradient_accumulation_steps": 2,
"gradient_clipping": 0.5,
"steps_per_print": 1,
"train_micro_batch_size_per_gpu": 1,
"wall_clock_breakdown": false
}
Metadata
Metadata
Assignees
Labels
No labels