1919)
2020from diffusers .models .attention import FreeNoiseTransformerBlock
2121from diffusers .utils import is_xformers_available , logging
22- from diffusers .utils .testing_utils import numpy_cosine_similarity_distance , require_torch_gpu , slow , torch_device
22+ from diffusers .utils .testing_utils import (
23+ numpy_cosine_similarity_distance ,
24+ require_accelerator ,
25+ require_torch_gpu ,
26+ slow ,
27+ torch_device ,
28+ )
2329
2430from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS , TEXT_TO_IMAGE_PARAMS
2531from ..test_pipelines_common import (
@@ -272,7 +278,7 @@ def test_inference_batch_single_identical(
272278 max_diff = np .abs (to_np (output_batch [0 ][0 ]) - to_np (output [0 ][0 ])).max ()
273279 assert max_diff < expected_max_diff
274280
275- @unittest . skipIf ( torch_device != "cuda" , reason = "CUDA and CPU are required to switch devices" )
281+ @require_accelerator
276282 def test_to_device (self ):
277283 components = self .get_dummy_components ()
278284 pipe = self .pipeline_class (** components )
@@ -288,14 +294,14 @@ def test_to_device(self):
288294 output_cpu = pipe (** self .get_dummy_inputs ("cpu" ))[0 ]
289295 self .assertTrue (np .isnan (output_cpu ).sum () == 0 )
290296
291- pipe .to ("cuda" )
297+ pipe .to (torch_device )
292298 model_devices = [
293299 component .device .type for component in pipe .components .values () if hasattr (component , "device" )
294300 ]
295- self .assertTrue (all (device == "cuda" for device in model_devices ))
301+ self .assertTrue (all (device == torch_device for device in model_devices ))
296302
297- output_cuda = pipe (** self .get_dummy_inputs ("cuda" ))[0 ]
298- self .assertTrue (np .isnan (to_np (output_cuda )).sum () == 0 )
303+ output_device = pipe (** self .get_dummy_inputs (torch_device ))[0 ]
304+ self .assertTrue (np .isnan (to_np (output_device )).sum () == 0 )
299305
300306 def test_to_dtype (self ):
301307 components = self .get_dummy_components ()
0 commit comments