|
| 1 | +from langtrace_python_sdk.utils.llm import ( |
| 2 | + get_langtrace_attributes, |
| 3 | + get_llm_request_attributes, |
| 4 | + set_span_attributes, |
| 5 | + set_usage_attributes, |
| 6 | + set_span_attribute, |
| 7 | + set_event_completion, |
| 8 | +) |
| 9 | +from langtrace_python_sdk.utils import handle_span_error |
| 10 | + |
| 11 | +from opentelemetry.trace import Tracer, SpanKind |
| 12 | +from opentelemetry.sdk.trace import Span |
| 13 | +from langtrace.trace_attributes import SpanAttributes |
| 14 | +from google.genai.types import GenerateContentResponse |
| 15 | + |
| 16 | +from typing import Iterator |
| 17 | + |
| 18 | + |
| 19 | +def patch_google_genai(tracer: Tracer, version: str): |
| 20 | + def traced_method(wrapped, instance, args, kwargs): |
| 21 | + prompt = [ |
| 22 | + { |
| 23 | + "role": "user", |
| 24 | + "content": kwargs["contents"], |
| 25 | + } |
| 26 | + ] |
| 27 | + span_attributes = { |
| 28 | + **get_langtrace_attributes( |
| 29 | + service_provider="google_genai", version=version |
| 30 | + ), |
| 31 | + **get_llm_request_attributes(kwargs=kwargs, prompts=prompt), |
| 32 | + } |
| 33 | + with tracer.start_as_current_span( |
| 34 | + name="google.genai.generate_content", |
| 35 | + kind=SpanKind.CLIENT, |
| 36 | + ) as span: |
| 37 | + try: |
| 38 | + set_span_attributes(span, span_attributes) |
| 39 | + response = wrapped(*args, **kwargs) |
| 40 | + set_response_attributes(span, response) |
| 41 | + return response |
| 42 | + except Exception as error: |
| 43 | + handle_span_error(span, error) |
| 44 | + raise |
| 45 | + |
| 46 | + return traced_method |
| 47 | + |
| 48 | + |
| 49 | +def patch_google_genai_streaming(tracer: Tracer, version: str): |
| 50 | + def traced_method(wrapped, instance, args, kwargs): |
| 51 | + prompt = [ |
| 52 | + { |
| 53 | + "role": "user", |
| 54 | + "content": kwargs["contents"], |
| 55 | + } |
| 56 | + ] |
| 57 | + span_attributes = { |
| 58 | + **get_langtrace_attributes( |
| 59 | + service_provider="google_genai", version=version |
| 60 | + ), |
| 61 | + **get_llm_request_attributes(kwargs=kwargs, prompts=prompt), |
| 62 | + } |
| 63 | + with tracer.start_as_current_span( |
| 64 | + name="google.genai.generate_content_stream", |
| 65 | + kind=SpanKind.CLIENT, |
| 66 | + ) as span: |
| 67 | + set_span_attributes(span, span_attributes) |
| 68 | + response = wrapped(*args, **kwargs) |
| 69 | + set_streaming_response_attributes(span, response) |
| 70 | + return response |
| 71 | + |
| 72 | + return traced_method |
| 73 | + |
| 74 | + |
| 75 | +def set_streaming_response_attributes( |
| 76 | + span: Span, response: Iterator[GenerateContentResponse] |
| 77 | +): |
| 78 | + accum_completion = "" |
| 79 | + for chunk in response: |
| 80 | + set_span_attribute( |
| 81 | + span, |
| 82 | + SpanAttributes.LLM_RESPONSE_MODEL, |
| 83 | + chunk.model_version, |
| 84 | + ) |
| 85 | + candidates = chunk.candidates |
| 86 | + for candidate in candidates: |
| 87 | + set_span_attribute( |
| 88 | + span, |
| 89 | + SpanAttributes.LLM_RESPONSE_FINISH_REASON, |
| 90 | + candidate.finish_reason, |
| 91 | + ) |
| 92 | + |
| 93 | + accum_completion += candidate.content.parts[0].text |
| 94 | + |
| 95 | + if chunk.usage_metadata: |
| 96 | + set_usage_attributes( |
| 97 | + span, |
| 98 | + { |
| 99 | + "input_tokens": chunk.usage_metadata.prompt_token_count, |
| 100 | + "output_tokens": chunk.usage_metadata.candidates_token_count, |
| 101 | + }, |
| 102 | + ) |
| 103 | + set_event_completion(span, [{"role": "assistant", "content": accum_completion}]) |
| 104 | + |
| 105 | + |
| 106 | +def set_response_attributes(span: Span, response: GenerateContentResponse): |
| 107 | + completions = [] |
| 108 | + for candidate in response.candidates: |
| 109 | + set_span_attribute( |
| 110 | + span, SpanAttributes.LLM_RESPONSE_FINISH_REASON, candidate.finish_reason |
| 111 | + ) |
| 112 | + parts = candidate.content.parts |
| 113 | + role = candidate.content.role |
| 114 | + completion = { |
| 115 | + "role": role or "assistant", |
| 116 | + "content": [part.text for part in parts], |
| 117 | + } |
| 118 | + completions.append(completion) |
| 119 | + |
| 120 | + set_span_attribute(span, SpanAttributes.LLM_RESPONSE_MODEL, response.model_version) |
| 121 | + set_event_completion(span, completions) |
| 122 | + if response.usage_metadata: |
| 123 | + set_usage_attributes( |
| 124 | + span, |
| 125 | + { |
| 126 | + "input_tokens": response.usage_metadata.prompt_token_count, |
| 127 | + "output_tokens": response.usage_metadata.candidates_token_count, |
| 128 | + }, |
| 129 | + ) |
0 commit comments