2525optimal configurations for epidemiological surrogate models.
2626"""
2727
28- import os
2928from pathlib import Path
3029
3130import pandas as pd
@@ -127,6 +126,9 @@ def perform_grid_search(
127126 raise ValueError (
128127 "Parameter grid must contain at least one configuration." )
129128
129+ # Convert save_dir to Path if it's a string
130+ save_dir = Path (save_dir ) / "saves"
131+
130132 # Determine output dimension from data
131133 output_dim = data [0 ].y .shape [- 1 ]
132134
@@ -230,10 +232,10 @@ def perform_grid_search(
230232 # Save intermediate results after each configuration
231233 results_df .to_csv (results_file , index = False )
232234 print (
233- f" ✓ Configuration complete. Results saved to { results_file } " )
235+ f"Configuration complete. Results saved to { results_file } " )
234236
235237 except Exception as e :
236- print (f" ✗ Error training configuration: { e } " )
238+ print (f"Error training configuration: { e } " )
237239 # Continue with next configuration rather than failing entire search
238240
239241 finally :
@@ -248,7 +250,7 @@ def perform_grid_search(
248250
249251 # Print best configuration
250252 if len (results_df ) > 0 :
251- best_idx = results_df ['mean_val_loss ' ].idxmin ()
253+ best_idx = results_df ['mean_validation_loss ' ].idxmin ()
252254 best_config = results_df .loc [best_idx ]
253255 print (f"\n Best Configuration:" )
254256 print (f" Model: { best_config ['model' ]} " )
0 commit comments