|
28 | 28 | nonbc_diffmode = AutoEnzyme( |
29 | 29 | mode = Enzyme.Forward, function_annotation = Enzyme.Duplicated)) |
30 | 30 | for jac_alg in [jac_alg_forwarddiff, jac_alg_enzyme, jac_alg_mooncake] |
31 | | - @test_nowarn sol = solve( |
| 31 | + sol = solve( |
32 | 32 | prob, RadauIIa5(; jac_alg = jac_alg, nested_nlsolve = true), dt = 0.05) |
| 33 | + @test SciMLBase.successful_retcode(sol) |
33 | 34 | end |
34 | 35 | end |
35 | | - #= |
36 | | - @testset "Test different AD on multipoint BVP using Interpolation BC" begin |
37 | | - function simplependulum!(du, u, p, t) |
38 | | - θ = u[1] |
39 | | - dθ = u[2] |
40 | | - du[1] = dθ |
41 | | - du[2] = -9.81 * sin(θ) |
42 | | - end |
43 | | - function bc!(residual, u, p, t) |
44 | | - residual[1] = u(pi / 4)[1] + pi / 2 |
45 | | - residual[2] = u(pi / 2)[1] - pi / 2 |
46 | | - end |
47 | | - u0 = [pi / 2, pi / 2] |
48 | | - tspan = (0.0, pi / 2) |
49 | | - prob = BVProblem(simplependulum!, bc!, u0, tspan) |
50 | | - jac_alg_forwarddiff = BVPJacobianAlgorithm( |
51 | | - bc_diffmode = AutoSparse(AutoForwardDiff()), nonbc_diffmode = AutoForwardDiff()) |
52 | | - jac_alg_enzyme = BVPJacobianAlgorithm( |
53 | | - bc_diffmode = AutoSparse(AutoEnzyme( |
54 | | - mode = Enzyme.Reverse, function_annotation = Enzyme.Duplicated)), |
55 | | - nonbc_diffmode = AutoEnzyme( |
56 | | - mode = Enzyme.Forward, function_annotation = Enzyme.Duplicated)) |
57 | | - jac_alg_mooncake = BVPJacobianAlgorithm( |
58 | | - bc_diffmode = AutoSparse(AutoMooncake(; config = nothing)), |
59 | | - nonbc_diffmode = AutoEnzyme( |
60 | | - mode = Enzyme.Forward, function_annotation = Enzyme.Duplicated)) |
61 | | - for jac_alg in [jac_alg_forwarddiff, jac_alg_enzyme, jac_alg_mooncake] |
62 | | - @test_nowarn sol = solve(prob, RadauIIa5(; jac_alg = jac_alg, nested_nlsolve = true), dt = 0.05) |
63 | | - end |
| 36 | + |
| 37 | + @testset "Test different AD on multipoint BVP using Interpolation BC" begin |
| 38 | + function simplependulum!(du, u, p, t) |
| 39 | + θ = u[1] |
| 40 | + dθ = u[2] |
| 41 | + du[1] = dθ |
| 42 | + du[2] = -9.81 * sin(θ) |
| 43 | + end |
| 44 | + function bc!(residual, u, p, t) |
| 45 | + residual[1] = u(pi / 4)[1] + pi / 2 |
| 46 | + residual[2] = u(pi / 2)[1] - pi / 2 |
64 | 47 | end |
65 | | - =# |
| 48 | + u0 = [pi / 2, pi / 2] |
| 49 | + tspan = (0.0, pi / 2) |
| 50 | + prob = BVProblem(simplependulum!, bc!, u0, tspan) |
| 51 | + jac_alg_forwarddiff = BVPJacobianAlgorithm( |
| 52 | + bc_diffmode = AutoSparse(AutoForwardDiff()), nonbc_diffmode = AutoForwardDiff()) |
| 53 | + jac_alg_enzyme = BVPJacobianAlgorithm( |
| 54 | + bc_diffmode = AutoSparse(AutoEnzyme( |
| 55 | + mode = Enzyme.Reverse, function_annotation = Enzyme.Duplicated)), |
| 56 | + nonbc_diffmode = AutoEnzyme( |
| 57 | + mode = Enzyme.Forward, function_annotation = Enzyme.Duplicated)) |
| 58 | + jac_alg_mooncake = BVPJacobianAlgorithm( |
| 59 | + bc_diffmode = AutoSparse(AutoMooncake(; config = nothing)), |
| 60 | + nonbc_diffmode = AutoEnzyme( |
| 61 | + mode = Enzyme.Forward, function_annotation = Enzyme.Duplicated)) |
| 62 | + for jac_alg in [jac_alg_forwarddiff, jac_alg_enzyme, jac_alg_mooncake] |
| 63 | + sol = solve( |
| 64 | + prob, RadauIIa5(; jac_alg = jac_alg, nested_nlsolve = true), dt = 0.05) |
| 65 | + @test SciMLBase.successful_retcode(sol) |
| 66 | + end |
| 67 | + end |
| 68 | + |
66 | 69 | @testset "Test different AD on twopoint BVP" begin |
67 | 70 | function f!(du, u, p, t) |
68 | 71 | du[1] = u[2] |
|
87 | 90 | jac_alg_mooncake = BVPJacobianAlgorithm(AutoSparse(AutoMooncake(; |
88 | 91 | config = nothing))) |
89 | 92 | for jac_alg in [jac_alg_forwarddiff, jac_alg_enzyme, jac_alg_mooncake] |
90 | | - @test_nowarn sol = solve( |
| 93 | + sol = solve( |
91 | 94 | prob, RadauIIa5(; jac_alg = jac_alg, nested_nlsolve = true), dt = 0.01) |
| 95 | + @test SciMLBase.successful_retcode(sol) |
92 | 96 | end |
93 | 97 | end |
94 | 98 | end |
0 commit comments